Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Subclasses and subsets
dfss6
Next ⟩
dfss2f
Metamath Proof Explorer
Ascii
Unicode
Theorem
dfss6
Description:
Alternate definition of subclass relationship.
(Contributed by
RP
, 16-Apr-2020)
Ref
Expression
Assertion
dfss6
⊢
A
⊆
B
↔
¬
∃
x
x
∈
A
∧
¬
x
∈
B
Proof
Step
Hyp
Ref
Expression
1
dfss2
⊢
A
⊆
B
↔
∀
x
x
∈
A
→
x
∈
B
2
notnotb
⊢
∀
x
x
∈
A
→
x
∈
B
↔
¬
¬
∀
x
x
∈
A
→
x
∈
B
3
1
2
bitri
⊢
A
⊆
B
↔
¬
¬
∀
x
x
∈
A
→
x
∈
B
4
exanali
⊢
∃
x
x
∈
A
∧
¬
x
∈
B
↔
¬
∀
x
x
∈
A
→
x
∈
B
5
3
4
xchbinxr
⊢
A
⊆
B
↔
¬
∃
x
x
∈
A
∧
¬
x
∈
B