Metamath Proof Explorer


Theorem dftr5

Description: An alternate way of defining a transitive class. Definition 1.1 of Schloeder p. 1. (Contributed by NM, 20-Mar-2004) Avoid ax-11 . (Revised by BTernaryTau, 28-Dec-2024)

Ref Expression
Assertion dftr5 TrAxAyxyA

Proof

Step Hyp Ref Expression
1 impexp yxxAyAyxxAyA
2 1 albii yyxxAyAyyxxAyA
3 df-ral yxxAyAyyxxAyA
4 r19.21v yxxAyAxAyxyA
5 2 3 4 3bitr2i yyxxAyAxAyxyA
6 5 albii xyyxxAyAxxAyxyA
7 dftr2c TrAxyyxxAyA
8 df-ral xAyxyAxxAyxyA
9 6 7 8 3bitr4i TrAxAyxyA