Metamath Proof Explorer


Theorem dftr5OLD

Description: Obsolete version of dftr5 as of 28-Dec-2024. (Contributed by NM, 20-Mar-2004) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion dftr5OLD TrAxAyxyA

Proof

Step Hyp Ref Expression
1 dftr2 TrAyxyxxAyA
2 alcom yxyxxAyAxyyxxAyA
3 impexp yxxAyAyxxAyA
4 3 albii yyxxAyAyyxxAyA
5 df-ral yxxAyAyyxxAyA
6 4 5 bitr4i yyxxAyAyxxAyA
7 r19.21v yxxAyAxAyxyA
8 6 7 bitri yyxxAyAxAyxyA
9 8 albii xyyxxAyAxxAyxyA
10 df-ral xAyxyAxxAyxyA
11 9 10 bitr4i xyyxxAyAxAyxyA
12 2 11 bitri yxyxxAyAxAyxyA
13 1 12 bitri TrAxAyxyA