Metamath Proof Explorer


Theorem dia2dimlem11

Description: Lemma for dia2dim . Convert ordering hypothesis on RF to subspace membership F e. ( I( U .\/ V ) ) . (Contributed by NM, 8-Sep-2014)

Ref Expression
Hypotheses dia2dimlem11.l ˙ = K
dia2dimlem11.j ˙ = join K
dia2dimlem11.m ˙ = meet K
dia2dimlem11.a A = Atoms K
dia2dimlem11.h H = LHyp K
dia2dimlem11.t T = LTrn K W
dia2dimlem11.r R = trL K W
dia2dimlem11.y Y = DVecA K W
dia2dimlem11.s S = LSubSp Y
dia2dimlem11.pl ˙ = LSSum Y
dia2dimlem11.n N = LSpan Y
dia2dimlem11.i I = DIsoA K W
dia2dimlem11.k φ K HL W H
dia2dimlem11.u φ U A U ˙ W
dia2dimlem11.v φ V A V ˙ W
dia2dimlem11.f φ F T
dia2dimlem11.uv φ U V
dia2dimlem11.fe φ F I U ˙ V
Assertion dia2dimlem11 φ F I U ˙ I V

Proof

Step Hyp Ref Expression
1 dia2dimlem11.l ˙ = K
2 dia2dimlem11.j ˙ = join K
3 dia2dimlem11.m ˙ = meet K
4 dia2dimlem11.a A = Atoms K
5 dia2dimlem11.h H = LHyp K
6 dia2dimlem11.t T = LTrn K W
7 dia2dimlem11.r R = trL K W
8 dia2dimlem11.y Y = DVecA K W
9 dia2dimlem11.s S = LSubSp Y
10 dia2dimlem11.pl ˙ = LSSum Y
11 dia2dimlem11.n N = LSpan Y
12 dia2dimlem11.i I = DIsoA K W
13 dia2dimlem11.k φ K HL W H
14 dia2dimlem11.u φ U A U ˙ W
15 dia2dimlem11.v φ V A V ˙ W
16 dia2dimlem11.f φ F T
17 dia2dimlem11.uv φ U V
18 dia2dimlem11.fe φ F I U ˙ V
19 1 2 4 5 6 7 8 9 11 12 13 14 15 16 18 dia2dimlem10 φ R F ˙ U ˙ V
20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 19 17 dia2dimlem9 φ F I U ˙ I V