| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dia2dimlem9.l |
|
| 2 |
|
dia2dimlem9.j |
|
| 3 |
|
dia2dimlem9.m |
|
| 4 |
|
dia2dimlem9.a |
|
| 5 |
|
dia2dimlem9.h |
|
| 6 |
|
dia2dimlem9.t |
|
| 7 |
|
dia2dimlem9.r |
|
| 8 |
|
dia2dimlem9.y |
|
| 9 |
|
dia2dimlem9.s |
|
| 10 |
|
dia2dimlem9.pl |
|
| 11 |
|
dia2dimlem9.n |
|
| 12 |
|
dia2dimlem9.i |
|
| 13 |
|
dia2dimlem9.k |
|
| 14 |
|
dia2dimlem9.u |
|
| 15 |
|
dia2dimlem9.v |
|
| 16 |
|
dia2dimlem9.f |
|
| 17 |
|
dia2dimlem9.rf |
|
| 18 |
|
dia2dimlem9.uv |
|
| 19 |
5 8
|
dvalvec |
|
| 20 |
|
lveclmod |
|
| 21 |
9
|
lsssssubg |
|
| 22 |
13 19 20 21
|
4syl |
|
| 23 |
14
|
simpld |
|
| 24 |
|
eqid |
|
| 25 |
24 4
|
atbase |
|
| 26 |
23 25
|
syl |
|
| 27 |
14
|
simprd |
|
| 28 |
24 1 5 8 12 9
|
dialss |
|
| 29 |
13 26 27 28
|
syl12anc |
|
| 30 |
22 29
|
sseldd |
|
| 31 |
15
|
simpld |
|
| 32 |
24 4
|
atbase |
|
| 33 |
31 32
|
syl |
|
| 34 |
15
|
simprd |
|
| 35 |
24 1 5 8 12 9
|
dialss |
|
| 36 |
13 33 34 35
|
syl12anc |
|
| 37 |
22 36
|
sseldd |
|
| 38 |
10
|
lsmub1 |
|
| 39 |
30 37 38
|
syl2anc |
|
| 40 |
39
|
adantr |
|
| 41 |
5 6 7 12
|
dia1dimid |
|
| 42 |
13 16 41
|
syl2anc |
|
| 43 |
42
|
adantr |
|
| 44 |
|
fveq2 |
|
| 45 |
44
|
adantl |
|
| 46 |
43 45
|
eleqtrd |
|
| 47 |
40 46
|
sseldd |
|
| 48 |
30
|
adantr |
|
| 49 |
37
|
adantr |
|
| 50 |
10
|
lsmub2 |
|
| 51 |
48 49 50
|
syl2anc |
|
| 52 |
42
|
adantr |
|
| 53 |
|
fveq2 |
|
| 54 |
53
|
adantl |
|
| 55 |
52 54
|
eleqtrd |
|
| 56 |
51 55
|
sseldd |
|
| 57 |
13
|
adantr |
|
| 58 |
14
|
adantr |
|
| 59 |
15
|
adantr |
|
| 60 |
16
|
adantr |
|
| 61 |
17
|
adantr |
|
| 62 |
18
|
adantr |
|
| 63 |
|
simprl |
|
| 64 |
|
simprr |
|
| 65 |
1 2 3 4 5 6 7 8 9 10 11 12 57 58 59 60 61 62 63 64
|
dia2dimlem8 |
|
| 66 |
47 56 65
|
pm2.61da2ne |
|