Step |
Hyp |
Ref |
Expression |
1 |
|
dia2dimlem9.l |
|- .<_ = ( le ` K ) |
2 |
|
dia2dimlem9.j |
|- .\/ = ( join ` K ) |
3 |
|
dia2dimlem9.m |
|- ./\ = ( meet ` K ) |
4 |
|
dia2dimlem9.a |
|- A = ( Atoms ` K ) |
5 |
|
dia2dimlem9.h |
|- H = ( LHyp ` K ) |
6 |
|
dia2dimlem9.t |
|- T = ( ( LTrn ` K ) ` W ) |
7 |
|
dia2dimlem9.r |
|- R = ( ( trL ` K ) ` W ) |
8 |
|
dia2dimlem9.y |
|- Y = ( ( DVecA ` K ) ` W ) |
9 |
|
dia2dimlem9.s |
|- S = ( LSubSp ` Y ) |
10 |
|
dia2dimlem9.pl |
|- .(+) = ( LSSum ` Y ) |
11 |
|
dia2dimlem9.n |
|- N = ( LSpan ` Y ) |
12 |
|
dia2dimlem9.i |
|- I = ( ( DIsoA ` K ) ` W ) |
13 |
|
dia2dimlem9.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
14 |
|
dia2dimlem9.u |
|- ( ph -> ( U e. A /\ U .<_ W ) ) |
15 |
|
dia2dimlem9.v |
|- ( ph -> ( V e. A /\ V .<_ W ) ) |
16 |
|
dia2dimlem9.f |
|- ( ph -> F e. T ) |
17 |
|
dia2dimlem9.rf |
|- ( ph -> ( R ` F ) .<_ ( U .\/ V ) ) |
18 |
|
dia2dimlem9.uv |
|- ( ph -> U =/= V ) |
19 |
5 8
|
dvalvec |
|- ( ( K e. HL /\ W e. H ) -> Y e. LVec ) |
20 |
|
lveclmod |
|- ( Y e. LVec -> Y e. LMod ) |
21 |
9
|
lsssssubg |
|- ( Y e. LMod -> S C_ ( SubGrp ` Y ) ) |
22 |
13 19 20 21
|
4syl |
|- ( ph -> S C_ ( SubGrp ` Y ) ) |
23 |
14
|
simpld |
|- ( ph -> U e. A ) |
24 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
25 |
24 4
|
atbase |
|- ( U e. A -> U e. ( Base ` K ) ) |
26 |
23 25
|
syl |
|- ( ph -> U e. ( Base ` K ) ) |
27 |
14
|
simprd |
|- ( ph -> U .<_ W ) |
28 |
24 1 5 8 12 9
|
dialss |
|- ( ( ( K e. HL /\ W e. H ) /\ ( U e. ( Base ` K ) /\ U .<_ W ) ) -> ( I ` U ) e. S ) |
29 |
13 26 27 28
|
syl12anc |
|- ( ph -> ( I ` U ) e. S ) |
30 |
22 29
|
sseldd |
|- ( ph -> ( I ` U ) e. ( SubGrp ` Y ) ) |
31 |
15
|
simpld |
|- ( ph -> V e. A ) |
32 |
24 4
|
atbase |
|- ( V e. A -> V e. ( Base ` K ) ) |
33 |
31 32
|
syl |
|- ( ph -> V e. ( Base ` K ) ) |
34 |
15
|
simprd |
|- ( ph -> V .<_ W ) |
35 |
24 1 5 8 12 9
|
dialss |
|- ( ( ( K e. HL /\ W e. H ) /\ ( V e. ( Base ` K ) /\ V .<_ W ) ) -> ( I ` V ) e. S ) |
36 |
13 33 34 35
|
syl12anc |
|- ( ph -> ( I ` V ) e. S ) |
37 |
22 36
|
sseldd |
|- ( ph -> ( I ` V ) e. ( SubGrp ` Y ) ) |
38 |
10
|
lsmub1 |
|- ( ( ( I ` U ) e. ( SubGrp ` Y ) /\ ( I ` V ) e. ( SubGrp ` Y ) ) -> ( I ` U ) C_ ( ( I ` U ) .(+) ( I ` V ) ) ) |
39 |
30 37 38
|
syl2anc |
|- ( ph -> ( I ` U ) C_ ( ( I ` U ) .(+) ( I ` V ) ) ) |
40 |
39
|
adantr |
|- ( ( ph /\ ( R ` F ) = U ) -> ( I ` U ) C_ ( ( I ` U ) .(+) ( I ` V ) ) ) |
41 |
5 6 7 12
|
dia1dimid |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> F e. ( I ` ( R ` F ) ) ) |
42 |
13 16 41
|
syl2anc |
|- ( ph -> F e. ( I ` ( R ` F ) ) ) |
43 |
42
|
adantr |
|- ( ( ph /\ ( R ` F ) = U ) -> F e. ( I ` ( R ` F ) ) ) |
44 |
|
fveq2 |
|- ( ( R ` F ) = U -> ( I ` ( R ` F ) ) = ( I ` U ) ) |
45 |
44
|
adantl |
|- ( ( ph /\ ( R ` F ) = U ) -> ( I ` ( R ` F ) ) = ( I ` U ) ) |
46 |
43 45
|
eleqtrd |
|- ( ( ph /\ ( R ` F ) = U ) -> F e. ( I ` U ) ) |
47 |
40 46
|
sseldd |
|- ( ( ph /\ ( R ` F ) = U ) -> F e. ( ( I ` U ) .(+) ( I ` V ) ) ) |
48 |
30
|
adantr |
|- ( ( ph /\ ( R ` F ) = V ) -> ( I ` U ) e. ( SubGrp ` Y ) ) |
49 |
37
|
adantr |
|- ( ( ph /\ ( R ` F ) = V ) -> ( I ` V ) e. ( SubGrp ` Y ) ) |
50 |
10
|
lsmub2 |
|- ( ( ( I ` U ) e. ( SubGrp ` Y ) /\ ( I ` V ) e. ( SubGrp ` Y ) ) -> ( I ` V ) C_ ( ( I ` U ) .(+) ( I ` V ) ) ) |
51 |
48 49 50
|
syl2anc |
|- ( ( ph /\ ( R ` F ) = V ) -> ( I ` V ) C_ ( ( I ` U ) .(+) ( I ` V ) ) ) |
52 |
42
|
adantr |
|- ( ( ph /\ ( R ` F ) = V ) -> F e. ( I ` ( R ` F ) ) ) |
53 |
|
fveq2 |
|- ( ( R ` F ) = V -> ( I ` ( R ` F ) ) = ( I ` V ) ) |
54 |
53
|
adantl |
|- ( ( ph /\ ( R ` F ) = V ) -> ( I ` ( R ` F ) ) = ( I ` V ) ) |
55 |
52 54
|
eleqtrd |
|- ( ( ph /\ ( R ` F ) = V ) -> F e. ( I ` V ) ) |
56 |
51 55
|
sseldd |
|- ( ( ph /\ ( R ` F ) = V ) -> F e. ( ( I ` U ) .(+) ( I ` V ) ) ) |
57 |
13
|
adantr |
|- ( ( ph /\ ( ( R ` F ) =/= U /\ ( R ` F ) =/= V ) ) -> ( K e. HL /\ W e. H ) ) |
58 |
14
|
adantr |
|- ( ( ph /\ ( ( R ` F ) =/= U /\ ( R ` F ) =/= V ) ) -> ( U e. A /\ U .<_ W ) ) |
59 |
15
|
adantr |
|- ( ( ph /\ ( ( R ` F ) =/= U /\ ( R ` F ) =/= V ) ) -> ( V e. A /\ V .<_ W ) ) |
60 |
16
|
adantr |
|- ( ( ph /\ ( ( R ` F ) =/= U /\ ( R ` F ) =/= V ) ) -> F e. T ) |
61 |
17
|
adantr |
|- ( ( ph /\ ( ( R ` F ) =/= U /\ ( R ` F ) =/= V ) ) -> ( R ` F ) .<_ ( U .\/ V ) ) |
62 |
18
|
adantr |
|- ( ( ph /\ ( ( R ` F ) =/= U /\ ( R ` F ) =/= V ) ) -> U =/= V ) |
63 |
|
simprl |
|- ( ( ph /\ ( ( R ` F ) =/= U /\ ( R ` F ) =/= V ) ) -> ( R ` F ) =/= U ) |
64 |
|
simprr |
|- ( ( ph /\ ( ( R ` F ) =/= U /\ ( R ` F ) =/= V ) ) -> ( R ` F ) =/= V ) |
65 |
1 2 3 4 5 6 7 8 9 10 11 12 57 58 59 60 61 62 63 64
|
dia2dimlem8 |
|- ( ( ph /\ ( ( R ` F ) =/= U /\ ( R ` F ) =/= V ) ) -> F e. ( ( I ` U ) .(+) ( I ` V ) ) ) |
66 |
47 56 65
|
pm2.61da2ne |
|- ( ph -> F e. ( ( I ` U ) .(+) ( I ` V ) ) ) |