| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dia2dimlem8.l |
|- .<_ = ( le ` K ) |
| 2 |
|
dia2dimlem8.j |
|- .\/ = ( join ` K ) |
| 3 |
|
dia2dimlem8.m |
|- ./\ = ( meet ` K ) |
| 4 |
|
dia2dimlem8.a |
|- A = ( Atoms ` K ) |
| 5 |
|
dia2dimlem8.h |
|- H = ( LHyp ` K ) |
| 6 |
|
dia2dimlem8.t |
|- T = ( ( LTrn ` K ) ` W ) |
| 7 |
|
dia2dimlem8.r |
|- R = ( ( trL ` K ) ` W ) |
| 8 |
|
dia2dimlem8.y |
|- Y = ( ( DVecA ` K ) ` W ) |
| 9 |
|
dia2dimlem8.s |
|- S = ( LSubSp ` Y ) |
| 10 |
|
dia2dimlem8.pl |
|- .(+) = ( LSSum ` Y ) |
| 11 |
|
dia2dimlem8.n |
|- N = ( LSpan ` Y ) |
| 12 |
|
dia2dimlem8.i |
|- I = ( ( DIsoA ` K ) ` W ) |
| 13 |
|
dia2dimlem8.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 14 |
|
dia2dimlem8.u |
|- ( ph -> ( U e. A /\ U .<_ W ) ) |
| 15 |
|
dia2dimlem8.v |
|- ( ph -> ( V e. A /\ V .<_ W ) ) |
| 16 |
|
dia2dimlem8.f |
|- ( ph -> F e. T ) |
| 17 |
|
dia2dimlem8.rf |
|- ( ph -> ( R ` F ) .<_ ( U .\/ V ) ) |
| 18 |
|
dia2dimlem8.uv |
|- ( ph -> U =/= V ) |
| 19 |
|
dia2dimlem8.ru |
|- ( ph -> ( R ` F ) =/= U ) |
| 20 |
|
dia2dimlem8.rv |
|- ( ph -> ( R ` F ) =/= V ) |
| 21 |
|
eqid |
|- ( ( ( ( oc ` K ) ` W ) .\/ U ) ./\ ( ( F ` ( ( oc ` K ) ` W ) ) .\/ V ) ) = ( ( ( ( oc ` K ) ` W ) .\/ U ) ./\ ( ( F ` ( ( oc ` K ) ` W ) ) .\/ V ) ) |
| 22 |
|
eqid |
|- ( oc ` K ) = ( oc ` K ) |
| 23 |
1 22 4 5
|
lhpocnel |
|- ( ( K e. HL /\ W e. H ) -> ( ( ( oc ` K ) ` W ) e. A /\ -. ( ( oc ` K ) ` W ) .<_ W ) ) |
| 24 |
13 23
|
syl |
|- ( ph -> ( ( ( oc ` K ) ` W ) e. A /\ -. ( ( oc ` K ) ` W ) .<_ W ) ) |
| 25 |
1 2 3 4 5 6 7 8 9 10 11 12 21 13 14 15 24 16 17 18 19 20
|
dia2dimlem7 |
|- ( ph -> F e. ( ( I ` U ) .(+) ( I ` V ) ) ) |