Metamath Proof Explorer


Theorem dia2dimlem8

Description: Lemma for dia2dim . Eliminate no-longer used auxiliary atoms P and Q . (Contributed by NM, 8-Sep-2014)

Ref Expression
Hypotheses dia2dimlem8.l
|- .<_ = ( le ` K )
dia2dimlem8.j
|- .\/ = ( join ` K )
dia2dimlem8.m
|- ./\ = ( meet ` K )
dia2dimlem8.a
|- A = ( Atoms ` K )
dia2dimlem8.h
|- H = ( LHyp ` K )
dia2dimlem8.t
|- T = ( ( LTrn ` K ) ` W )
dia2dimlem8.r
|- R = ( ( trL ` K ) ` W )
dia2dimlem8.y
|- Y = ( ( DVecA ` K ) ` W )
dia2dimlem8.s
|- S = ( LSubSp ` Y )
dia2dimlem8.pl
|- .(+) = ( LSSum ` Y )
dia2dimlem8.n
|- N = ( LSpan ` Y )
dia2dimlem8.i
|- I = ( ( DIsoA ` K ) ` W )
dia2dimlem8.k
|- ( ph -> ( K e. HL /\ W e. H ) )
dia2dimlem8.u
|- ( ph -> ( U e. A /\ U .<_ W ) )
dia2dimlem8.v
|- ( ph -> ( V e. A /\ V .<_ W ) )
dia2dimlem8.f
|- ( ph -> F e. T )
dia2dimlem8.rf
|- ( ph -> ( R ` F ) .<_ ( U .\/ V ) )
dia2dimlem8.uv
|- ( ph -> U =/= V )
dia2dimlem8.ru
|- ( ph -> ( R ` F ) =/= U )
dia2dimlem8.rv
|- ( ph -> ( R ` F ) =/= V )
Assertion dia2dimlem8
|- ( ph -> F e. ( ( I ` U ) .(+) ( I ` V ) ) )

Proof

Step Hyp Ref Expression
1 dia2dimlem8.l
 |-  .<_ = ( le ` K )
2 dia2dimlem8.j
 |-  .\/ = ( join ` K )
3 dia2dimlem8.m
 |-  ./\ = ( meet ` K )
4 dia2dimlem8.a
 |-  A = ( Atoms ` K )
5 dia2dimlem8.h
 |-  H = ( LHyp ` K )
6 dia2dimlem8.t
 |-  T = ( ( LTrn ` K ) ` W )
7 dia2dimlem8.r
 |-  R = ( ( trL ` K ) ` W )
8 dia2dimlem8.y
 |-  Y = ( ( DVecA ` K ) ` W )
9 dia2dimlem8.s
 |-  S = ( LSubSp ` Y )
10 dia2dimlem8.pl
 |-  .(+) = ( LSSum ` Y )
11 dia2dimlem8.n
 |-  N = ( LSpan ` Y )
12 dia2dimlem8.i
 |-  I = ( ( DIsoA ` K ) ` W )
13 dia2dimlem8.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
14 dia2dimlem8.u
 |-  ( ph -> ( U e. A /\ U .<_ W ) )
15 dia2dimlem8.v
 |-  ( ph -> ( V e. A /\ V .<_ W ) )
16 dia2dimlem8.f
 |-  ( ph -> F e. T )
17 dia2dimlem8.rf
 |-  ( ph -> ( R ` F ) .<_ ( U .\/ V ) )
18 dia2dimlem8.uv
 |-  ( ph -> U =/= V )
19 dia2dimlem8.ru
 |-  ( ph -> ( R ` F ) =/= U )
20 dia2dimlem8.rv
 |-  ( ph -> ( R ` F ) =/= V )
21 eqid
 |-  ( ( ( ( oc ` K ) ` W ) .\/ U ) ./\ ( ( F ` ( ( oc ` K ) ` W ) ) .\/ V ) ) = ( ( ( ( oc ` K ) ` W ) .\/ U ) ./\ ( ( F ` ( ( oc ` K ) ` W ) ) .\/ V ) )
22 eqid
 |-  ( oc ` K ) = ( oc ` K )
23 1 22 4 5 lhpocnel
 |-  ( ( K e. HL /\ W e. H ) -> ( ( ( oc ` K ) ` W ) e. A /\ -. ( ( oc ` K ) ` W ) .<_ W ) )
24 13 23 syl
 |-  ( ph -> ( ( ( oc ` K ) ` W ) e. A /\ -. ( ( oc ` K ) ` W ) .<_ W ) )
25 1 2 3 4 5 6 7 8 9 10 11 12 21 13 14 15 24 16 17 18 19 20 dia2dimlem7
 |-  ( ph -> F e. ( ( I ` U ) .(+) ( I ` V ) ) )