Description: Lemma for dia2dim . Eliminate no-longer used auxiliary atoms P and Q . (Contributed by NM, 8-Sep-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dia2dimlem8.l | |- .<_ = ( le ` K ) |
|
dia2dimlem8.j | |- .\/ = ( join ` K ) |
||
dia2dimlem8.m | |- ./\ = ( meet ` K ) |
||
dia2dimlem8.a | |- A = ( Atoms ` K ) |
||
dia2dimlem8.h | |- H = ( LHyp ` K ) |
||
dia2dimlem8.t | |- T = ( ( LTrn ` K ) ` W ) |
||
dia2dimlem8.r | |- R = ( ( trL ` K ) ` W ) |
||
dia2dimlem8.y | |- Y = ( ( DVecA ` K ) ` W ) |
||
dia2dimlem8.s | |- S = ( LSubSp ` Y ) |
||
dia2dimlem8.pl | |- .(+) = ( LSSum ` Y ) |
||
dia2dimlem8.n | |- N = ( LSpan ` Y ) |
||
dia2dimlem8.i | |- I = ( ( DIsoA ` K ) ` W ) |
||
dia2dimlem8.k | |- ( ph -> ( K e. HL /\ W e. H ) ) |
||
dia2dimlem8.u | |- ( ph -> ( U e. A /\ U .<_ W ) ) |
||
dia2dimlem8.v | |- ( ph -> ( V e. A /\ V .<_ W ) ) |
||
dia2dimlem8.f | |- ( ph -> F e. T ) |
||
dia2dimlem8.rf | |- ( ph -> ( R ` F ) .<_ ( U .\/ V ) ) |
||
dia2dimlem8.uv | |- ( ph -> U =/= V ) |
||
dia2dimlem8.ru | |- ( ph -> ( R ` F ) =/= U ) |
||
dia2dimlem8.rv | |- ( ph -> ( R ` F ) =/= V ) |
||
Assertion | dia2dimlem8 | |- ( ph -> F e. ( ( I ` U ) .(+) ( I ` V ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dia2dimlem8.l | |- .<_ = ( le ` K ) |
|
2 | dia2dimlem8.j | |- .\/ = ( join ` K ) |
|
3 | dia2dimlem8.m | |- ./\ = ( meet ` K ) |
|
4 | dia2dimlem8.a | |- A = ( Atoms ` K ) |
|
5 | dia2dimlem8.h | |- H = ( LHyp ` K ) |
|
6 | dia2dimlem8.t | |- T = ( ( LTrn ` K ) ` W ) |
|
7 | dia2dimlem8.r | |- R = ( ( trL ` K ) ` W ) |
|
8 | dia2dimlem8.y | |- Y = ( ( DVecA ` K ) ` W ) |
|
9 | dia2dimlem8.s | |- S = ( LSubSp ` Y ) |
|
10 | dia2dimlem8.pl | |- .(+) = ( LSSum ` Y ) |
|
11 | dia2dimlem8.n | |- N = ( LSpan ` Y ) |
|
12 | dia2dimlem8.i | |- I = ( ( DIsoA ` K ) ` W ) |
|
13 | dia2dimlem8.k | |- ( ph -> ( K e. HL /\ W e. H ) ) |
|
14 | dia2dimlem8.u | |- ( ph -> ( U e. A /\ U .<_ W ) ) |
|
15 | dia2dimlem8.v | |- ( ph -> ( V e. A /\ V .<_ W ) ) |
|
16 | dia2dimlem8.f | |- ( ph -> F e. T ) |
|
17 | dia2dimlem8.rf | |- ( ph -> ( R ` F ) .<_ ( U .\/ V ) ) |
|
18 | dia2dimlem8.uv | |- ( ph -> U =/= V ) |
|
19 | dia2dimlem8.ru | |- ( ph -> ( R ` F ) =/= U ) |
|
20 | dia2dimlem8.rv | |- ( ph -> ( R ` F ) =/= V ) |
|
21 | eqid | |- ( ( ( ( oc ` K ) ` W ) .\/ U ) ./\ ( ( F ` ( ( oc ` K ) ` W ) ) .\/ V ) ) = ( ( ( ( oc ` K ) ` W ) .\/ U ) ./\ ( ( F ` ( ( oc ` K ) ` W ) ) .\/ V ) ) |
|
22 | eqid | |- ( oc ` K ) = ( oc ` K ) |
|
23 | 1 22 4 5 | lhpocnel | |- ( ( K e. HL /\ W e. H ) -> ( ( ( oc ` K ) ` W ) e. A /\ -. ( ( oc ` K ) ` W ) .<_ W ) ) |
24 | 13 23 | syl | |- ( ph -> ( ( ( oc ` K ) ` W ) e. A /\ -. ( ( oc ` K ) ` W ) .<_ W ) ) |
25 | 1 2 3 4 5 6 7 8 9 10 11 12 21 13 14 15 24 16 17 18 19 20 | dia2dimlem7 | |- ( ph -> F e. ( ( I ` U ) .(+) ( I ` V ) ) ) |