Metamath Proof Explorer


Theorem dia2dimlem8

Description: Lemma for dia2dim . Eliminate no-longer used auxiliary atoms P and Q . (Contributed by NM, 8-Sep-2014)

Ref Expression
Hypotheses dia2dimlem8.l = ( le ‘ 𝐾 )
dia2dimlem8.j = ( join ‘ 𝐾 )
dia2dimlem8.m = ( meet ‘ 𝐾 )
dia2dimlem8.a 𝐴 = ( Atoms ‘ 𝐾 )
dia2dimlem8.h 𝐻 = ( LHyp ‘ 𝐾 )
dia2dimlem8.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
dia2dimlem8.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
dia2dimlem8.y 𝑌 = ( ( DVecA ‘ 𝐾 ) ‘ 𝑊 )
dia2dimlem8.s 𝑆 = ( LSubSp ‘ 𝑌 )
dia2dimlem8.pl = ( LSSum ‘ 𝑌 )
dia2dimlem8.n 𝑁 = ( LSpan ‘ 𝑌 )
dia2dimlem8.i 𝐼 = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 )
dia2dimlem8.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
dia2dimlem8.u ( 𝜑 → ( 𝑈𝐴𝑈 𝑊 ) )
dia2dimlem8.v ( 𝜑 → ( 𝑉𝐴𝑉 𝑊 ) )
dia2dimlem8.f ( 𝜑𝐹𝑇 )
dia2dimlem8.rf ( 𝜑 → ( 𝑅𝐹 ) ( 𝑈 𝑉 ) )
dia2dimlem8.uv ( 𝜑𝑈𝑉 )
dia2dimlem8.ru ( 𝜑 → ( 𝑅𝐹 ) ≠ 𝑈 )
dia2dimlem8.rv ( 𝜑 → ( 𝑅𝐹 ) ≠ 𝑉 )
Assertion dia2dimlem8 ( 𝜑𝐹 ∈ ( ( 𝐼𝑈 ) ( 𝐼𝑉 ) ) )

Proof

Step Hyp Ref Expression
1 dia2dimlem8.l = ( le ‘ 𝐾 )
2 dia2dimlem8.j = ( join ‘ 𝐾 )
3 dia2dimlem8.m = ( meet ‘ 𝐾 )
4 dia2dimlem8.a 𝐴 = ( Atoms ‘ 𝐾 )
5 dia2dimlem8.h 𝐻 = ( LHyp ‘ 𝐾 )
6 dia2dimlem8.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
7 dia2dimlem8.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
8 dia2dimlem8.y 𝑌 = ( ( DVecA ‘ 𝐾 ) ‘ 𝑊 )
9 dia2dimlem8.s 𝑆 = ( LSubSp ‘ 𝑌 )
10 dia2dimlem8.pl = ( LSSum ‘ 𝑌 )
11 dia2dimlem8.n 𝑁 = ( LSpan ‘ 𝑌 )
12 dia2dimlem8.i 𝐼 = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 )
13 dia2dimlem8.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
14 dia2dimlem8.u ( 𝜑 → ( 𝑈𝐴𝑈 𝑊 ) )
15 dia2dimlem8.v ( 𝜑 → ( 𝑉𝐴𝑉 𝑊 ) )
16 dia2dimlem8.f ( 𝜑𝐹𝑇 )
17 dia2dimlem8.rf ( 𝜑 → ( 𝑅𝐹 ) ( 𝑈 𝑉 ) )
18 dia2dimlem8.uv ( 𝜑𝑈𝑉 )
19 dia2dimlem8.ru ( 𝜑 → ( 𝑅𝐹 ) ≠ 𝑈 )
20 dia2dimlem8.rv ( 𝜑 → ( 𝑅𝐹 ) ≠ 𝑉 )
21 eqid ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) 𝑈 ) ( ( 𝐹 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) 𝑉 ) ) = ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) 𝑈 ) ( ( 𝐹 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) 𝑉 ) )
22 eqid ( oc ‘ 𝐾 ) = ( oc ‘ 𝐾 )
23 1 22 4 5 lhpocnel ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ∈ 𝐴 ∧ ¬ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) 𝑊 ) )
24 13 23 syl ( 𝜑 → ( ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ∈ 𝐴 ∧ ¬ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) 𝑊 ) )
25 1 2 3 4 5 6 7 8 9 10 11 12 21 13 14 15 24 16 17 18 19 20 dia2dimlem7 ( 𝜑𝐹 ∈ ( ( 𝐼𝑈 ) ( 𝐼𝑉 ) ) )