Step |
Hyp |
Ref |
Expression |
1 |
|
dia2dimlem8.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
dia2dimlem8.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
dia2dimlem8.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
4 |
|
dia2dimlem8.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
dia2dimlem8.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
6 |
|
dia2dimlem8.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
7 |
|
dia2dimlem8.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
dia2dimlem8.y |
⊢ 𝑌 = ( ( DVecA ‘ 𝐾 ) ‘ 𝑊 ) |
9 |
|
dia2dimlem8.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑌 ) |
10 |
|
dia2dimlem8.pl |
⊢ ⊕ = ( LSSum ‘ 𝑌 ) |
11 |
|
dia2dimlem8.n |
⊢ 𝑁 = ( LSpan ‘ 𝑌 ) |
12 |
|
dia2dimlem8.i |
⊢ 𝐼 = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) |
13 |
|
dia2dimlem8.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
14 |
|
dia2dimlem8.u |
⊢ ( 𝜑 → ( 𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊 ) ) |
15 |
|
dia2dimlem8.v |
⊢ ( 𝜑 → ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) |
16 |
|
dia2dimlem8.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝑇 ) |
17 |
|
dia2dimlem8.rf |
⊢ ( 𝜑 → ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑈 ∨ 𝑉 ) ) |
18 |
|
dia2dimlem8.uv |
⊢ ( 𝜑 → 𝑈 ≠ 𝑉 ) |
19 |
|
dia2dimlem8.ru |
⊢ ( 𝜑 → ( 𝑅 ‘ 𝐹 ) ≠ 𝑈 ) |
20 |
|
dia2dimlem8.rv |
⊢ ( 𝜑 → ( 𝑅 ‘ 𝐹 ) ≠ 𝑉 ) |
21 |
|
eqid |
⊢ ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ∨ 𝑈 ) ∧ ( ( 𝐹 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ∨ 𝑉 ) ) = ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ∨ 𝑈 ) ∧ ( ( 𝐹 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ∨ 𝑉 ) ) |
22 |
|
eqid |
⊢ ( oc ‘ 𝐾 ) = ( oc ‘ 𝐾 ) |
23 |
1 22 4 5
|
lhpocnel |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ∈ 𝐴 ∧ ¬ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ≤ 𝑊 ) ) |
24 |
13 23
|
syl |
⊢ ( 𝜑 → ( ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ∈ 𝐴 ∧ ¬ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ≤ 𝑊 ) ) |
25 |
1 2 3 4 5 6 7 8 9 10 11 12 21 13 14 15 24 16 17 18 19 20
|
dia2dimlem7 |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐼 ‘ 𝑈 ) ⊕ ( 𝐼 ‘ 𝑉 ) ) ) |