Metamath Proof Explorer


Theorem dia2dimlem8

Description: Lemma for dia2dim . Eliminate no-longer used auxiliary atoms P and Q . (Contributed by NM, 8-Sep-2014)

Ref Expression
Hypotheses dia2dimlem8.l ˙=K
dia2dimlem8.j ˙=joinK
dia2dimlem8.m ˙=meetK
dia2dimlem8.a A=AtomsK
dia2dimlem8.h H=LHypK
dia2dimlem8.t T=LTrnKW
dia2dimlem8.r R=trLKW
dia2dimlem8.y Y=DVecAKW
dia2dimlem8.s S=LSubSpY
dia2dimlem8.pl ˙=LSSumY
dia2dimlem8.n N=LSpanY
dia2dimlem8.i I=DIsoAKW
dia2dimlem8.k φKHLWH
dia2dimlem8.u φUAU˙W
dia2dimlem8.v φVAV˙W
dia2dimlem8.f φFT
dia2dimlem8.rf φRF˙U˙V
dia2dimlem8.uv φUV
dia2dimlem8.ru φRFU
dia2dimlem8.rv φRFV
Assertion dia2dimlem8 φFIU˙IV

Proof

Step Hyp Ref Expression
1 dia2dimlem8.l ˙=K
2 dia2dimlem8.j ˙=joinK
3 dia2dimlem8.m ˙=meetK
4 dia2dimlem8.a A=AtomsK
5 dia2dimlem8.h H=LHypK
6 dia2dimlem8.t T=LTrnKW
7 dia2dimlem8.r R=trLKW
8 dia2dimlem8.y Y=DVecAKW
9 dia2dimlem8.s S=LSubSpY
10 dia2dimlem8.pl ˙=LSSumY
11 dia2dimlem8.n N=LSpanY
12 dia2dimlem8.i I=DIsoAKW
13 dia2dimlem8.k φKHLWH
14 dia2dimlem8.u φUAU˙W
15 dia2dimlem8.v φVAV˙W
16 dia2dimlem8.f φFT
17 dia2dimlem8.rf φRF˙U˙V
18 dia2dimlem8.uv φUV
19 dia2dimlem8.ru φRFU
20 dia2dimlem8.rv φRFV
21 eqid ocKW˙U˙FocKW˙V=ocKW˙U˙FocKW˙V
22 eqid ocK=ocK
23 1 22 4 5 lhpocnel KHLWHocKWA¬ocKW˙W
24 13 23 syl φocKWA¬ocKW˙W
25 1 2 3 4 5 6 7 8 9 10 11 12 21 13 14 15 24 16 17 18 19 20 dia2dimlem7 φFIU˙IV