Metamath Proof Explorer


Theorem dia2dimlem7

Description: Lemma for dia2dim . Eliminate ( FP ) =/= P condition. (Contributed by NM, 8-Sep-2014)

Ref Expression
Hypotheses dia2dimlem7.l ˙ = K
dia2dimlem7.j ˙ = join K
dia2dimlem7.m ˙ = meet K
dia2dimlem7.a A = Atoms K
dia2dimlem7.h H = LHyp K
dia2dimlem7.t T = LTrn K W
dia2dimlem7.r R = trL K W
dia2dimlem7.y Y = DVecA K W
dia2dimlem7.s S = LSubSp Y
dia2dimlem7.pl ˙ = LSSum Y
dia2dimlem7.n N = LSpan Y
dia2dimlem7.i I = DIsoA K W
dia2dimlem7.q Q = P ˙ U ˙ F P ˙ V
dia2dimlem7.k φ K HL W H
dia2dimlem7.u φ U A U ˙ W
dia2dimlem7.v φ V A V ˙ W
dia2dimlem7.p φ P A ¬ P ˙ W
dia2dimlem7.f φ F T
dia2dimlem7.rf φ R F ˙ U ˙ V
dia2dimlem7.uv φ U V
dia2dimlem7.ru φ R F U
dia2dimlem7.rv φ R F V
Assertion dia2dimlem7 φ F I U ˙ I V

Proof

Step Hyp Ref Expression
1 dia2dimlem7.l ˙ = K
2 dia2dimlem7.j ˙ = join K
3 dia2dimlem7.m ˙ = meet K
4 dia2dimlem7.a A = Atoms K
5 dia2dimlem7.h H = LHyp K
6 dia2dimlem7.t T = LTrn K W
7 dia2dimlem7.r R = trL K W
8 dia2dimlem7.y Y = DVecA K W
9 dia2dimlem7.s S = LSubSp Y
10 dia2dimlem7.pl ˙ = LSSum Y
11 dia2dimlem7.n N = LSpan Y
12 dia2dimlem7.i I = DIsoA K W
13 dia2dimlem7.q Q = P ˙ U ˙ F P ˙ V
14 dia2dimlem7.k φ K HL W H
15 dia2dimlem7.u φ U A U ˙ W
16 dia2dimlem7.v φ V A V ˙ W
17 dia2dimlem7.p φ P A ¬ P ˙ W
18 dia2dimlem7.f φ F T
19 dia2dimlem7.rf φ R F ˙ U ˙ V
20 dia2dimlem7.uv φ U V
21 dia2dimlem7.ru φ R F U
22 dia2dimlem7.rv φ R F V
23 eqid Base K = Base K
24 23 1 4 5 6 ltrnideq K HL W H F T P A ¬ P ˙ W F = I Base K F P = P
25 14 18 17 24 syl3anc φ F = I Base K F P = P
26 eqid 0 Y = 0 Y
27 23 5 6 8 26 dva0g K HL W H 0 Y = I Base K
28 14 27 syl φ 0 Y = I Base K
29 5 8 dvalvec K HL W H Y LVec
30 lveclmod Y LVec Y LMod
31 14 29 30 3syl φ Y LMod
32 15 simpld φ U A
33 23 4 atbase U A U Base K
34 32 33 syl φ U Base K
35 15 simprd φ U ˙ W
36 23 1 5 8 12 9 dialss K HL W H U Base K U ˙ W I U S
37 14 34 35 36 syl12anc φ I U S
38 16 simpld φ V A
39 23 4 atbase V A V Base K
40 38 39 syl φ V Base K
41 16 simprd φ V ˙ W
42 23 1 5 8 12 9 dialss K HL W H V Base K V ˙ W I V S
43 14 40 41 42 syl12anc φ I V S
44 9 10 lsmcl Y LMod I U S I V S I U ˙ I V S
45 31 37 43 44 syl3anc φ I U ˙ I V S
46 26 9 lss0cl Y LMod I U ˙ I V S 0 Y I U ˙ I V
47 31 45 46 syl2anc φ 0 Y I U ˙ I V
48 28 47 eqeltrrd φ I Base K I U ˙ I V
49 eleq1a I Base K I U ˙ I V F = I Base K F I U ˙ I V
50 48 49 syl φ F = I Base K F I U ˙ I V
51 25 50 sylbird φ F P = P F I U ˙ I V
52 51 imp φ F P = P F I U ˙ I V
53 14 adantr φ F P P K HL W H
54 15 adantr φ F P P U A U ˙ W
55 16 adantr φ F P P V A V ˙ W
56 17 adantr φ F P P P A ¬ P ˙ W
57 18 anim1i φ F P P F T F P P
58 19 adantr φ F P P R F ˙ U ˙ V
59 20 adantr φ F P P U V
60 21 adantr φ F P P R F U
61 22 adantr φ F P P R F V
62 1 2 3 4 5 6 7 8 9 10 11 12 13 53 54 55 56 57 58 59 60 61 dia2dimlem6 φ F P P F I U ˙ I V
63 52 62 pm2.61dane φ F I U ˙ I V