Metamath Proof Explorer


Theorem dia2dimlem6

Description: Lemma for dia2dim . Eliminate auxiliary translations G and D . (Contributed by NM, 8-Sep-2014)

Ref Expression
Hypotheses dia2dimlem6.l ˙=K
dia2dimlem6.j ˙=joinK
dia2dimlem6.m ˙=meetK
dia2dimlem6.a A=AtomsK
dia2dimlem6.h H=LHypK
dia2dimlem6.t T=LTrnKW
dia2dimlem6.r R=trLKW
dia2dimlem6.y Y=DVecAKW
dia2dimlem6.s S=LSubSpY
dia2dimlem6.pl ˙=LSSumY
dia2dimlem6.n N=LSpanY
dia2dimlem6.i I=DIsoAKW
dia2dimlem6.q Q=P˙U˙FP˙V
dia2dimlem6.k φKHLWH
dia2dimlem6.u φUAU˙W
dia2dimlem6.v φVAV˙W
dia2dimlem6.p φPA¬P˙W
dia2dimlem6.f φFTFPP
dia2dimlem6.rf φRF˙U˙V
dia2dimlem6.uv φUV
dia2dimlem6.ru φRFU
dia2dimlem6.rv φRFV
Assertion dia2dimlem6 φFIU˙IV

Proof

Step Hyp Ref Expression
1 dia2dimlem6.l ˙=K
2 dia2dimlem6.j ˙=joinK
3 dia2dimlem6.m ˙=meetK
4 dia2dimlem6.a A=AtomsK
5 dia2dimlem6.h H=LHypK
6 dia2dimlem6.t T=LTrnKW
7 dia2dimlem6.r R=trLKW
8 dia2dimlem6.y Y=DVecAKW
9 dia2dimlem6.s S=LSubSpY
10 dia2dimlem6.pl ˙=LSSumY
11 dia2dimlem6.n N=LSpanY
12 dia2dimlem6.i I=DIsoAKW
13 dia2dimlem6.q Q=P˙U˙FP˙V
14 dia2dimlem6.k φKHLWH
15 dia2dimlem6.u φUAU˙W
16 dia2dimlem6.v φVAV˙W
17 dia2dimlem6.p φPA¬P˙W
18 dia2dimlem6.f φFTFPP
19 dia2dimlem6.rf φRF˙U˙V
20 dia2dimlem6.uv φUV
21 dia2dimlem6.ru φRFU
22 dia2dimlem6.rv φRFV
23 1 2 3 4 5 6 7 13 14 15 16 17 18 19 20 21 dia2dimlem1 φQA¬Q˙W
24 18 simpld φFT
25 1 4 5 6 ltrnel KHLWHFTPA¬P˙WFPA¬FP˙W
26 14 24 17 25 syl3anc φFPA¬FP˙W
27 1 4 5 6 cdleme50ex KHLWHQA¬Q˙WFPA¬FP˙WdTdQ=FP
28 14 23 26 27 syl3anc φdTdQ=FP
29 1 4 5 6 cdleme50ex KHLWHPA¬P˙WQA¬Q˙WgTgP=Q
30 14 17 23 29 syl3anc φgTgP=Q
31 14 3ad2ant1 φgTgP=QdTdQ=FPKHLWH
32 15 3ad2ant1 φgTgP=QdTdQ=FPUAU˙W
33 16 3ad2ant1 φgTgP=QdTdQ=FPVAV˙W
34 17 3ad2ant1 φgTgP=QdTdQ=FPPA¬P˙W
35 18 3ad2ant1 φgTgP=QdTdQ=FPFTFPP
36 19 3ad2ant1 φgTgP=QdTdQ=FPRF˙U˙V
37 20 3ad2ant1 φgTgP=QdTdQ=FPUV
38 21 3ad2ant1 φgTgP=QdTdQ=FPRFU
39 22 3ad2ant1 φgTgP=QdTdQ=FPRFV
40 simp21 φgTgP=QdTdQ=FPgT
41 simp22 φgTgP=QdTdQ=FPgP=Q
42 simp23 φgTgP=QdTdQ=FPdT
43 simp3 φgTgP=QdTdQ=FPdQ=FP
44 1 2 3 4 5 6 7 8 9 10 11 12 13 31 32 33 34 35 36 37 38 39 40 41 42 43 dia2dimlem5 φgTgP=QdTdQ=FPFIU˙IV
45 44 3exp φgTgP=QdTdQ=FPFIU˙IV
46 45 3expd φgTgP=QdTdQ=FPFIU˙IV
47 46 rexlimdv φgTgP=QdTdQ=FPFIU˙IV
48 30 47 mpd φdTdQ=FPFIU˙IV
49 48 rexlimdv φdTdQ=FPFIU˙IV
50 28 49 mpd φFIU˙IV