| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dia2dimlem7.l |
|- .<_ = ( le ` K ) |
| 2 |
|
dia2dimlem7.j |
|- .\/ = ( join ` K ) |
| 3 |
|
dia2dimlem7.m |
|- ./\ = ( meet ` K ) |
| 4 |
|
dia2dimlem7.a |
|- A = ( Atoms ` K ) |
| 5 |
|
dia2dimlem7.h |
|- H = ( LHyp ` K ) |
| 6 |
|
dia2dimlem7.t |
|- T = ( ( LTrn ` K ) ` W ) |
| 7 |
|
dia2dimlem7.r |
|- R = ( ( trL ` K ) ` W ) |
| 8 |
|
dia2dimlem7.y |
|- Y = ( ( DVecA ` K ) ` W ) |
| 9 |
|
dia2dimlem7.s |
|- S = ( LSubSp ` Y ) |
| 10 |
|
dia2dimlem7.pl |
|- .(+) = ( LSSum ` Y ) |
| 11 |
|
dia2dimlem7.n |
|- N = ( LSpan ` Y ) |
| 12 |
|
dia2dimlem7.i |
|- I = ( ( DIsoA ` K ) ` W ) |
| 13 |
|
dia2dimlem7.q |
|- Q = ( ( P .\/ U ) ./\ ( ( F ` P ) .\/ V ) ) |
| 14 |
|
dia2dimlem7.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 15 |
|
dia2dimlem7.u |
|- ( ph -> ( U e. A /\ U .<_ W ) ) |
| 16 |
|
dia2dimlem7.v |
|- ( ph -> ( V e. A /\ V .<_ W ) ) |
| 17 |
|
dia2dimlem7.p |
|- ( ph -> ( P e. A /\ -. P .<_ W ) ) |
| 18 |
|
dia2dimlem7.f |
|- ( ph -> F e. T ) |
| 19 |
|
dia2dimlem7.rf |
|- ( ph -> ( R ` F ) .<_ ( U .\/ V ) ) |
| 20 |
|
dia2dimlem7.uv |
|- ( ph -> U =/= V ) |
| 21 |
|
dia2dimlem7.ru |
|- ( ph -> ( R ` F ) =/= U ) |
| 22 |
|
dia2dimlem7.rv |
|- ( ph -> ( R ` F ) =/= V ) |
| 23 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 24 |
23 1 4 5 6
|
ltrnideq |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( F = ( _I |` ( Base ` K ) ) <-> ( F ` P ) = P ) ) |
| 25 |
14 18 17 24
|
syl3anc |
|- ( ph -> ( F = ( _I |` ( Base ` K ) ) <-> ( F ` P ) = P ) ) |
| 26 |
|
eqid |
|- ( 0g ` Y ) = ( 0g ` Y ) |
| 27 |
23 5 6 8 26
|
dva0g |
|- ( ( K e. HL /\ W e. H ) -> ( 0g ` Y ) = ( _I |` ( Base ` K ) ) ) |
| 28 |
14 27
|
syl |
|- ( ph -> ( 0g ` Y ) = ( _I |` ( Base ` K ) ) ) |
| 29 |
5 8
|
dvalvec |
|- ( ( K e. HL /\ W e. H ) -> Y e. LVec ) |
| 30 |
|
lveclmod |
|- ( Y e. LVec -> Y e. LMod ) |
| 31 |
14 29 30
|
3syl |
|- ( ph -> Y e. LMod ) |
| 32 |
15
|
simpld |
|- ( ph -> U e. A ) |
| 33 |
23 4
|
atbase |
|- ( U e. A -> U e. ( Base ` K ) ) |
| 34 |
32 33
|
syl |
|- ( ph -> U e. ( Base ` K ) ) |
| 35 |
15
|
simprd |
|- ( ph -> U .<_ W ) |
| 36 |
23 1 5 8 12 9
|
dialss |
|- ( ( ( K e. HL /\ W e. H ) /\ ( U e. ( Base ` K ) /\ U .<_ W ) ) -> ( I ` U ) e. S ) |
| 37 |
14 34 35 36
|
syl12anc |
|- ( ph -> ( I ` U ) e. S ) |
| 38 |
16
|
simpld |
|- ( ph -> V e. A ) |
| 39 |
23 4
|
atbase |
|- ( V e. A -> V e. ( Base ` K ) ) |
| 40 |
38 39
|
syl |
|- ( ph -> V e. ( Base ` K ) ) |
| 41 |
16
|
simprd |
|- ( ph -> V .<_ W ) |
| 42 |
23 1 5 8 12 9
|
dialss |
|- ( ( ( K e. HL /\ W e. H ) /\ ( V e. ( Base ` K ) /\ V .<_ W ) ) -> ( I ` V ) e. S ) |
| 43 |
14 40 41 42
|
syl12anc |
|- ( ph -> ( I ` V ) e. S ) |
| 44 |
9 10
|
lsmcl |
|- ( ( Y e. LMod /\ ( I ` U ) e. S /\ ( I ` V ) e. S ) -> ( ( I ` U ) .(+) ( I ` V ) ) e. S ) |
| 45 |
31 37 43 44
|
syl3anc |
|- ( ph -> ( ( I ` U ) .(+) ( I ` V ) ) e. S ) |
| 46 |
26 9
|
lss0cl |
|- ( ( Y e. LMod /\ ( ( I ` U ) .(+) ( I ` V ) ) e. S ) -> ( 0g ` Y ) e. ( ( I ` U ) .(+) ( I ` V ) ) ) |
| 47 |
31 45 46
|
syl2anc |
|- ( ph -> ( 0g ` Y ) e. ( ( I ` U ) .(+) ( I ` V ) ) ) |
| 48 |
28 47
|
eqeltrrd |
|- ( ph -> ( _I |` ( Base ` K ) ) e. ( ( I ` U ) .(+) ( I ` V ) ) ) |
| 49 |
|
eleq1a |
|- ( ( _I |` ( Base ` K ) ) e. ( ( I ` U ) .(+) ( I ` V ) ) -> ( F = ( _I |` ( Base ` K ) ) -> F e. ( ( I ` U ) .(+) ( I ` V ) ) ) ) |
| 50 |
48 49
|
syl |
|- ( ph -> ( F = ( _I |` ( Base ` K ) ) -> F e. ( ( I ` U ) .(+) ( I ` V ) ) ) ) |
| 51 |
25 50
|
sylbird |
|- ( ph -> ( ( F ` P ) = P -> F e. ( ( I ` U ) .(+) ( I ` V ) ) ) ) |
| 52 |
51
|
imp |
|- ( ( ph /\ ( F ` P ) = P ) -> F e. ( ( I ` U ) .(+) ( I ` V ) ) ) |
| 53 |
14
|
adantr |
|- ( ( ph /\ ( F ` P ) =/= P ) -> ( K e. HL /\ W e. H ) ) |
| 54 |
15
|
adantr |
|- ( ( ph /\ ( F ` P ) =/= P ) -> ( U e. A /\ U .<_ W ) ) |
| 55 |
16
|
adantr |
|- ( ( ph /\ ( F ` P ) =/= P ) -> ( V e. A /\ V .<_ W ) ) |
| 56 |
17
|
adantr |
|- ( ( ph /\ ( F ` P ) =/= P ) -> ( P e. A /\ -. P .<_ W ) ) |
| 57 |
18
|
anim1i |
|- ( ( ph /\ ( F ` P ) =/= P ) -> ( F e. T /\ ( F ` P ) =/= P ) ) |
| 58 |
19
|
adantr |
|- ( ( ph /\ ( F ` P ) =/= P ) -> ( R ` F ) .<_ ( U .\/ V ) ) |
| 59 |
20
|
adantr |
|- ( ( ph /\ ( F ` P ) =/= P ) -> U =/= V ) |
| 60 |
21
|
adantr |
|- ( ( ph /\ ( F ` P ) =/= P ) -> ( R ` F ) =/= U ) |
| 61 |
22
|
adantr |
|- ( ( ph /\ ( F ` P ) =/= P ) -> ( R ` F ) =/= V ) |
| 62 |
1 2 3 4 5 6 7 8 9 10 11 12 13 53 54 55 56 57 58 59 60 61
|
dia2dimlem6 |
|- ( ( ph /\ ( F ` P ) =/= P ) -> F e. ( ( I ` U ) .(+) ( I ` V ) ) ) |
| 63 |
52 62
|
pm2.61dane |
|- ( ph -> F e. ( ( I ` U ) .(+) ( I ` V ) ) ) |