Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Zhi Wang
Categories
Constant functors
diag1a
Next ⟩
diag1f1lem
Metamath Proof Explorer
Ascii
Unicode
Theorem
diag1a
Description:
The constant functor of
X
.
(Contributed by
Zhi Wang
, 19-Oct-2025)
Ref
Expression
Hypotheses
diag1.l
⊢
L
=
C
Δ
func
D
diag1.c
⊢
φ
→
C
∈
Cat
diag1.d
⊢
φ
→
D
∈
Cat
diag1.a
⊢
A
=
Base
C
diag1.x
⊢
φ
→
X
∈
A
diag1.k
⊢
K
=
1
st
⁡
L
⁡
X
diag1.b
⊢
B
=
Base
D
diag1.j
⊢
J
=
Hom
⁡
D
diag1.i
⊢
1
˙
=
Id
⁡
C
Assertion
diag1a
⊢
φ
→
K
=
B
×
X
y
∈
B
,
z
∈
B
⟼
y
J
z
×
1
˙
⁡
X
Proof
Step
Hyp
Ref
Expression
1
diag1.l
⊢
L
=
C
Δ
func
D
2
diag1.c
⊢
φ
→
C
∈
Cat
3
diag1.d
⊢
φ
→
D
∈
Cat
4
diag1.a
⊢
A
=
Base
C
5
diag1.x
⊢
φ
→
X
∈
A
6
diag1.k
⊢
K
=
1
st
⁡
L
⁡
X
7
diag1.b
⊢
B
=
Base
D
8
diag1.j
⊢
J
=
Hom
⁡
D
9
diag1.i
⊢
1
˙
=
Id
⁡
C
10
1
2
3
4
5
6
7
8
9
diag1
⊢
φ
→
K
=
y
∈
B
⟼
X
y
∈
B
,
z
∈
B
⟼
f
∈
y
J
z
⟼
1
˙
⁡
X
11
fconstmpt
⊢
B
×
X
=
y
∈
B
⟼
X
12
fconstmpt
⊢
y
J
z
×
1
˙
⁡
X
=
f
∈
y
J
z
⟼
1
˙
⁡
X
13
12
a1i
⊢
y
∈
B
∧
z
∈
B
→
y
J
z
×
1
˙
⁡
X
=
f
∈
y
J
z
⟼
1
˙
⁡
X
14
13
mpoeq3ia
⊢
y
∈
B
,
z
∈
B
⟼
y
J
z
×
1
˙
⁡
X
=
y
∈
B
,
z
∈
B
⟼
f
∈
y
J
z
⟼
1
˙
⁡
X
15
11
14
opeq12i
⊢
B
×
X
y
∈
B
,
z
∈
B
⟼
y
J
z
×
1
˙
⁡
X
=
y
∈
B
⟼
X
y
∈
B
,
z
∈
B
⟼
f
∈
y
J
z
⟼
1
˙
⁡
X
16
10
15
eqtr4di
⊢
φ
→
K
=
B
×
X
y
∈
B
,
z
∈
B
⟼
y
J
z
×
1
˙
⁡
X