Metamath Proof Explorer


Theorem diag1a

Description: The constant functor of X . (Contributed by Zhi Wang, 19-Oct-2025)

Ref Expression
Hypotheses diag1.l L = C Δ func D
diag1.c φ C Cat
diag1.d φ D Cat
diag1.a A = Base C
diag1.x φ X A
diag1.k K = 1 st L X
diag1.b B = Base D
diag1.j J = Hom D
diag1.i 1 ˙ = Id C
Assertion diag1a φ K = B × X y B , z B y J z × 1 ˙ X

Proof

Step Hyp Ref Expression
1 diag1.l L = C Δ func D
2 diag1.c φ C Cat
3 diag1.d φ D Cat
4 diag1.a A = Base C
5 diag1.x φ X A
6 diag1.k K = 1 st L X
7 diag1.b B = Base D
8 diag1.j J = Hom D
9 diag1.i 1 ˙ = Id C
10 1 2 3 4 5 6 7 8 9 diag1 φ K = y B X y B , z B f y J z 1 ˙ X
11 fconstmpt B × X = y B X
12 fconstmpt y J z × 1 ˙ X = f y J z 1 ˙ X
13 12 a1i y B z B y J z × 1 ˙ X = f y J z 1 ˙ X
14 13 mpoeq3ia y B , z B y J z × 1 ˙ X = y B , z B f y J z 1 ˙ X
15 11 14 opeq12i B × X y B , z B y J z × 1 ˙ X = y B X y B , z B f y J z 1 ˙ X
16 10 15 eqtr4di φ K = B × X y B , z B y J z × 1 ˙ X