Metamath Proof Explorer


Theorem difdif

Description: Double class difference. Exercise 11 of TakeutiZaring p. 22. (Contributed by NM, 17-May-1998)

Ref Expression
Assertion difdif ABA=A

Proof

Step Hyp Ref Expression
1 pm4.45im xAxAxBxA
2 iman xBxA¬xB¬xA
3 eldif xBAxB¬xA
4 2 3 xchbinxr xBxA¬xBA
5 4 anbi2i xAxBxAxA¬xBA
6 1 5 bitr2i xA¬xBAxA
7 6 difeqri ABA=A