Metamath Proof Explorer


Theorem difdifdir

Description: Distributive law for class difference. Exercise 4.8 of Stoll p. 16. (Contributed by NM, 18-Aug-2004)

Ref Expression
Assertion difdifdir ABC=ACBC

Proof

Step Hyp Ref Expression
1 dif32 ABC=ACB
2 invdif ACVB=ACB
3 1 2 eqtr4i ABC=ACVB
4 un0 ACVB=ACVB
5 3 4 eqtr4i ABC=ACVB
6 indi ACVBC=ACVBACC
7 disjdif CAC=
8 incom CAC=ACC
9 7 8 eqtr3i =ACC
10 9 uneq2i ACVB=ACVBACC
11 6 10 eqtr4i ACVBC=ACVB
12 5 11 eqtr4i ABC=ACVBC
13 ddif VVC=C
14 13 uneq2i VBVVC=VBC
15 indm VBVC=VBVVC
16 invdif BVC=BC
17 16 difeq2i VBVC=VBC
18 15 17 eqtr3i VBVVC=VBC
19 14 18 eqtr3i VBC=VBC
20 19 ineq2i ACVBC=ACVBC
21 invdif ACVBC=ACBC
22 12 20 21 3eqtri ABC=ACBC