Metamath Proof Explorer


Theorem difelcarsg2

Description: The Caratheodory-measurable sets are closed under class difference. (Contributed by Thierry Arnoux, 30-May-2020)

Ref Expression
Hypotheses carsgval.1 φ O V
carsgval.2 φ M : 𝒫 O 0 +∞
difelcarsg.1 φ A toCaraSiga M
inelcarsg.1 φ a 𝒫 O b 𝒫 O M a b M a + 𝑒 M b
inelcarsg.2 φ B toCaraSiga M
Assertion difelcarsg2 φ A B toCaraSiga M

Proof

Step Hyp Ref Expression
1 carsgval.1 φ O V
2 carsgval.2 φ M : 𝒫 O 0 +∞
3 difelcarsg.1 φ A toCaraSiga M
4 inelcarsg.1 φ a 𝒫 O b 𝒫 O M a b M a + 𝑒 M b
5 inelcarsg.2 φ B toCaraSiga M
6 1 2 3 elcarsgss φ A O
7 difin2 A O A B = O B A
8 6 7 syl φ A B = O B A
9 1 2 5 difelcarsg φ O B toCaraSiga M
10 1 2 9 4 3 inelcarsg φ O B A toCaraSiga M
11 8 10 eqeltrd φ A B toCaraSiga M