Metamath Proof Explorer


Theorem difindir

Description: Distributive law for class difference. (Contributed by NM, 17-Aug-2004)

Ref Expression
Assertion difindir ABC=ACBC

Proof

Step Hyp Ref Expression
1 inindir ABVC=AVCBVC
2 invdif ABVC=ABC
3 invdif AVC=AC
4 invdif BVC=BC
5 3 4 ineq12i AVCBVC=ACBC
6 1 2 5 3eqtr3i ABC=ACBC