Metamath Proof Explorer


Theorem difrp

Description: Two ways to say one number is less than another. (Contributed by Mario Carneiro, 21-May-2014)

Ref Expression
Assertion difrp ABA<BBA+

Proof

Step Hyp Ref Expression
1 posdif ABA<B0<BA
2 resubcl BABA
3 2 ancoms ABBA
4 elrp BA+BA0<BA
5 4 baib BABA+0<BA
6 3 5 syl ABBA+0<BA
7 1 6 bitr4d ABA<BBA+