Metamath Proof Explorer


Theorem difuncomp

Description: Express a class difference using unions and class complements. (Contributed by Thierry Arnoux, 21-Jun-2020)

Ref Expression
Assertion difuncomp A C A B = C C A B

Proof

Step Hyp Ref Expression
1 sseqin2 A C C A = A
2 1 biimpi A C C A = A
3 incom C A = A C
4 2 3 eqtr3di A C A = A C
5 4 difeq1d A C A B = A C B
6 difundi C C A B = C C A C B
7 dfss4 A C C C A = A
8 7 biimpi A C C C A = A
9 8 ineq1d A C C C A C B = A C B
10 6 9 eqtrid A C C C A B = A C B
11 indif2 A C B = A C B
12 10 11 eqtrdi A C C C A B = A C B
13 5 12 eqtr4d A C A B = C C A B