Metamath Proof Explorer


Theorem difuncomp

Description: Express a class difference using unions and class complements. (Contributed by Thierry Arnoux, 21-Jun-2020)

Ref Expression
Assertion difuncomp ACAB=CCAB

Proof

Step Hyp Ref Expression
1 sseqin2 ACCA=A
2 1 biimpi ACCA=A
3 incom CA=AC
4 2 3 eqtr3di ACA=AC
5 4 difeq1d ACAB=ACB
6 difundi CCAB=CCACB
7 dfss4 ACCCA=A
8 7 biimpi ACCCA=A
9 8 ineq1d ACCCACB=ACB
10 6 9 eqtrid ACCCAB=ACB
11 indif2 ACB=ACB
12 10 11 eqtrdi ACCCAB=ACB
13 5 12 eqtr4d ACAB=CCAB