Metamath Proof Explorer


Theorem disjex

Description: Two ways to say that two classes are disjoint (or equal). (Contributed by Thierry Arnoux, 4-Oct-2016)

Ref Expression
Assertion disjex zzAzBA=BA=BAB=

Proof

Step Hyp Ref Expression
1 orcom A=B¬zzAzB¬zzAzBA=B
2 df-in AB=z|zAzB
3 2 neeq1i ABz|zAzB
4 abn0 z|zAzBzzAzB
5 3 4 bitr2i zzAzBAB
6 5 necon2bbii AB=¬zzAzB
7 6 orbi2i A=BAB=A=B¬zzAzB
8 imor zzAzBA=B¬zzAzBA=B
9 1 7 8 3bitr4ri zzAzBA=BA=BAB=