Metamath Proof Explorer


Theorem disjin

Description: If a collection is disjoint, so is the collection of the intersections with a given set. (Contributed by Thierry Arnoux, 14-Feb-2017)

Ref Expression
Assertion disjin DisjxBCDisjxBCA

Proof

Step Hyp Ref Expression
1 elinel1 yCAyC
2 1 rmoimi *xByC*xByCA
3 2 alimi y*xByCy*xByCA
4 df-disj DisjxBCy*xByC
5 df-disj DisjxBCAy*xByCA
6 3 4 5 3imtr4i DisjxBCDisjxBCA