Metamath Proof Explorer


Theorem disjin2

Description: If a collection is disjoint, so is the collection of the intersections with a given set. (Contributed by Thierry Arnoux, 21-Jun-2020)

Ref Expression
Assertion disjin2 DisjxBCDisjxBAC

Proof

Step Hyp Ref Expression
1 elinel2 yACyC
2 1 rmoimi *xByC*xByAC
3 2 alimi y*xByCy*xByAC
4 df-disj DisjxBCy*xByC
5 df-disj DisjxBACy*xByAC
6 3 4 5 3imtr4i DisjxBCDisjxBAC