Metamath Proof Explorer


Theorem disjprsn

Description: The disjoint intersection of an unordered pair and a singleton. (Contributed by AV, 23-Jan-2021)

Ref Expression
Assertion disjprsn ACBCABC=

Proof

Step Hyp Ref Expression
1 dfsn2 C=CC
2 1 ineq2i ABC=ABCC
3 disjpr2 ACBCACBCABCC=
4 3 anidms ACBCABCC=
5 2 4 eqtrid ACBCABC=