Metamath Proof Explorer


Theorem ditgeq12d

Description: Equality theorem for the directed integral. Deduction form. (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypotheses ditgeq12d.1 φ A = B
ditgeq12d.2 φ C = D
Assertion ditgeq12d φ A C E dx = B D E dx

Proof

Step Hyp Ref Expression
1 ditgeq12d.1 φ A = B
2 ditgeq12d.2 φ C = D
3 ditgeq1 A = B A C E dx = B C E dx
4 ditgeq2 C = D B C E dx = B D E dx
5 3 4 sylan9eq A = B C = D A C E dx = B D E dx
6 1 2 5 syl2anc φ A C E dx = B D E dx