Metamath Proof Explorer


Theorem ditgpos

Description: Value of the directed integral in the forward direction. (Contributed by Mario Carneiro, 13-Aug-2014)

Ref Expression
Hypothesis ditgpos.1 φAB
Assertion ditgpos φABCdx=ABCdx

Proof

Step Hyp Ref Expression
1 ditgpos.1 φAB
2 df-ditg ABCdx=ifABABCdxBACdx
3 1 iftrued φifABABCdxBACdx=ABCdx
4 2 3 eqtrid φABCdx=ABCdx