Metamath Proof Explorer


Theorem ditgneg

Description: Value of the directed integral in the backward direction. (Contributed by Mario Carneiro, 13-Aug-2014)

Ref Expression
Hypotheses ditgpos.1 φ A B
ditgneg.2 φ A
ditgneg.3 φ B
Assertion ditgneg φ B A C dx = A B C dx

Proof

Step Hyp Ref Expression
1 ditgpos.1 φ A B
2 ditgneg.2 φ A
3 ditgneg.3 φ B
4 1 biantrurd φ B A A B B A
5 2 3 letri3d φ A = B A B B A
6 4 5 bitr4d φ B A A = B
7 ditg0 B B C dx = 0
8 neg0 0 = 0
9 7 8 eqtr4i B B C dx = 0
10 ditgeq2 A = B B A C dx = B B C dx
11 oveq1 A = B A B = B B
12 iooid B B =
13 11 12 eqtrdi A = B A B =
14 itgeq1 A B = A B C dx = C dx
15 13 14 syl A = B A B C dx = C dx
16 itg0 C dx = 0
17 15 16 eqtrdi A = B A B C dx = 0
18 17 negeqd A = B A B C dx = 0
19 9 10 18 3eqtr4a A = B B A C dx = A B C dx
20 6 19 syl6bi φ B A B A C dx = A B C dx
21 df-ditg B A C dx = if B A B A C dx A B C dx
22 iffalse ¬ B A if B A B A C dx A B C dx = A B C dx
23 21 22 syl5eq ¬ B A B A C dx = A B C dx
24 20 23 pm2.61d1 φ B A C dx = A B C dx