Metamath Proof Explorer


Theorem itgeq1

Description: Equality theorem for an integral. (Contributed by Mario Carneiro, 28-Jun-2014)

Ref Expression
Assertion itgeq1 A=BACdx=BCdx

Proof

Step Hyp Ref Expression
1 nfcv _xA
2 nfcv _xB
3 1 2 itgeq1f A=BACdx=BCdx