Metamath Proof Explorer


Theorem itgeq1f

Description: Equality theorem for an integral. (Contributed by Mario Carneiro, 28-Jun-2014)

Ref Expression
Hypotheses itgeq1f.1 _ x A
itgeq1f.2 _ x B
Assertion itgeq1f A = B A C dx = B C dx

Proof

Step Hyp Ref Expression
1 itgeq1f.1 _ x A
2 itgeq1f.2 _ x B
3 eqid =
4 1 2 nfeq x A = B
5 eleq2 A = B x A x B
6 5 anbi1d A = B x A 0 C i k x B 0 C i k
7 6 ifbid A = B if x A 0 C i k C i k 0 = if x B 0 C i k C i k 0
8 7 a1d A = B x if x A 0 C i k C i k 0 = if x B 0 C i k C i k 0
9 4 8 ralrimi A = B x if x A 0 C i k C i k 0 = if x B 0 C i k C i k 0
10 mpteq12 = x if x A 0 C i k C i k 0 = if x B 0 C i k C i k 0 x if x A 0 C i k C i k 0 = x if x B 0 C i k C i k 0
11 3 9 10 sylancr A = B x if x A 0 C i k C i k 0 = x if x B 0 C i k C i k 0
12 11 fveq2d A = B 2 x if x A 0 C i k C i k 0 = 2 x if x B 0 C i k C i k 0
13 12 oveq2d A = B i k 2 x if x A 0 C i k C i k 0 = i k 2 x if x B 0 C i k C i k 0
14 13 sumeq2sdv A = B k = 0 3 i k 2 x if x A 0 C i k C i k 0 = k = 0 3 i k 2 x if x B 0 C i k C i k 0
15 eqid C i k = C i k
16 15 dfitg A C dx = k = 0 3 i k 2 x if x A 0 C i k C i k 0
17 15 dfitg B C dx = k = 0 3 i k 2 x if x B 0 C i k C i k 0
18 14 16 17 3eqtr4g A = B A C dx = B C dx