Metamath Proof Explorer


Theorem div2subd

Description: Swap subtrahend and minuend inside the numerator and denominator of a fraction. Deduction form of div2sub . (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Hypotheses div2subd.1 φA
div2subd.2 φB
div2subd.3 φC
div2subd.4 φD
div2subd.5 φCD
Assertion div2subd φABCD=BADC

Proof

Step Hyp Ref Expression
1 div2subd.1 φA
2 div2subd.2 φB
3 div2subd.3 φC
4 div2subd.4 φD
5 div2subd.5 φCD
6 div2sub ABCDCDABCD=BADC
7 1 2 3 4 5 6 syl23anc φABCD=BADC