Database REAL AND COMPLEX NUMBERS Real and complex numbers - basic operations Division div2subd  
				
		 
		
			
		 
		Description:   Swap subtrahend and minuend inside the numerator and denominator of a
       fraction.  Deduction form of div2sub  .  (Contributed by David Moews , 28-Feb-2017) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						div2subd.1    ⊢   φ   →   A  ∈   ℂ          
					 
					
						div2subd.2    ⊢   φ   →   B  ∈   ℂ          
					 
					
						div2subd.3    ⊢   φ   →   C  ∈   ℂ          
					 
					
						div2subd.4    ⊢   φ   →   D  ∈   ℂ          
					 
					
						div2subd.5    ⊢   φ   →   C  ≠  D         
					 
				
					Assertion 
					div2subd    ⊢   φ   →    A  −  B C  −  D   =   B  −  A D  −  C          
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							div2subd.1   ⊢   φ   →   A  ∈   ℂ          
						
							2 
								
							 
							div2subd.2   ⊢   φ   →   B  ∈   ℂ          
						
							3 
								
							 
							div2subd.3   ⊢   φ   →   C  ∈   ℂ          
						
							4 
								
							 
							div2subd.4   ⊢   φ   →   D  ∈   ℂ          
						
							5 
								
							 
							div2subd.5   ⊢   φ   →   C  ≠  D         
						
							6 
								
							 
							div2sub   ⊢     A  ∈   ℂ     ∧   B  ∈   ℂ      ∧    C  ∈   ℂ     ∧   D  ∈   ℂ     ∧   C  ≠  D      →    A  −  B C  −  D   =   B  −  A D  −  C          
						
							7 
								1  2  3  4  5  6 
							 
							syl23anc   ⊢   φ   →    A  −  B C  −  D   =   B  −  A D  −  C