Metamath Proof Explorer


Theorem divscan1wd

Description: A weak cancellation law for surreal division. (Contributed by Scott Fenton, 13-Mar-2025)

Ref Expression
Hypotheses divscan2wd.1 φANo
divscan2wd.2 φBNo
divscan2wd.3 φB0s
divscan2wd.4 φxNoBsx=1s
Assertion divscan1wd φA/suBsB=A

Proof

Step Hyp Ref Expression
1 divscan2wd.1 φANo
2 divscan2wd.2 φBNo
3 divscan2wd.3 φB0s
4 divscan2wd.4 φxNoBsx=1s
5 1 2 3 4 divsclwd φA/suBNo
6 5 2 mulscomd φA/suBsB=BsA/suB
7 1 2 3 4 divscan2wd φBsA/suB=A
8 6 7 eqtrd φA/suBsB=A