Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
Relations and Functions
Functions - misc additions
djussxp2
Next ⟩
2ndresdju
Metamath Proof Explorer
Ascii
Unicode
Theorem
djussxp2
Description:
Stronger version of
djussxp
.
(Contributed by
Thierry Arnoux
, 23-Jun-2024)
Ref
Expression
Assertion
djussxp2
⊢
⋃
k
∈
A
k
×
B
⊆
A
×
⋃
k
∈
A
B
Proof
Step
Hyp
Ref
Expression
1
nfcv
⊢
Ⅎ
_
k
A
2
nfiu1
⊢
Ⅎ
_
k
⋃
k
∈
A
B
3
1
2
nfxp
⊢
Ⅎ
_
k
A
×
⋃
k
∈
A
B
4
3
iunssf
⊢
⋃
k
∈
A
k
×
B
⊆
A
×
⋃
k
∈
A
B
↔
∀
k
∈
A
k
×
B
⊆
A
×
⋃
k
∈
A
B
5
snssi
⊢
k
∈
A
→
k
⊆
A
6
ssiun2
⊢
k
∈
A
→
B
⊆
⋃
k
∈
A
B
7
xpss12
⊢
k
⊆
A
∧
B
⊆
⋃
k
∈
A
B
→
k
×
B
⊆
A
×
⋃
k
∈
A
B
8
5
6
7
syl2anc
⊢
k
∈
A
→
k
×
B
⊆
A
×
⋃
k
∈
A
B
9
4
8
mprgbir
⊢
⋃
k
∈
A
k
×
B
⊆
A
×
⋃
k
∈
A
B