Metamath Proof Explorer


Theorem dm0rn0

Description: An empty domain is equivalent to an empty range. (Contributed by NM, 21-May-1998)

Ref Expression
Assertion dm0rn0 domA=ranA=

Proof

Step Hyp Ref Expression
1 alnex x¬yxAy¬xyxAy
2 excom xyxAyyxxAy
3 1 2 xchbinx x¬yxAy¬yxxAy
4 alnex y¬xxAy¬yxxAy
5 3 4 bitr4i x¬yxAyy¬xxAy
6 noel ¬x
7 6 nbn ¬yxAyyxAyx
8 7 albii x¬yxAyxyxAyx
9 noel ¬y
10 9 nbn ¬xxAyxxAyy
11 10 albii y¬xxAyyxxAyy
12 5 8 11 3bitr3i xyxAyxyxxAyy
13 eqabcb x|yxAy=xyxAyx
14 eqabcb y|xxAy=yxxAyy
15 12 13 14 3bitr4i x|yxAy=y|xxAy=
16 df-dm domA=x|yxAy
17 16 eqeq1i domA=x|yxAy=
18 dfrn2 ranA=y|xxAy
19 18 eqeq1i ranA=y|xxAy=
20 15 17 19 3bitr4i domA=ranA=