Metamath Proof Explorer


Theorem dmep

Description: The domain of the membership relation is the universal class. (Contributed by Scott Fenton, 27-Oct-2010) (Proof shortened by BJ, 26-Dec-2023)

Ref Expression
Assertion dmep domE=V

Proof

Step Hyp Ref Expression
1 eqv domE=VxxdomE
2 el yxy
3 epel xEyxy
4 3 exbii yxEyyxy
5 2 4 mpbir yxEy
6 vex xV
7 6 eldm xdomEyxEy
8 5 7 mpbir xdomE
9 1 8 mpgbir domE=V