Metamath Proof Explorer


Theorem dmopab

Description: The domain of a class of ordered pairs. (Contributed by NM, 16-May-1995) (Revised by Mario Carneiro, 4-Dec-2016)

Ref Expression
Assertion dmopab domxy|φ=x|yφ

Proof

Step Hyp Ref Expression
1 nfopab1 _xxy|φ
2 nfopab2 _yxy|φ
3 1 2 dfdmf domxy|φ=x|yxxy|φy
4 df-br xxy|φyxyxy|φ
5 opabidw xyxy|φφ
6 4 5 bitri xxy|φyφ
7 6 exbii yxxy|φyyφ
8 7 abbii x|yxxy|φy=x|yφ
9 3 8 eqtri domxy|φ=x|yφ