Metamath Proof Explorer


Theorem dmtpop

Description: The domain of an unordered triple of ordered pairs. (Contributed by NM, 14-Sep-2011)

Ref Expression
Hypotheses dmsnop.1 BV
dmprop.1 DV
dmtpop.1 FV
Assertion dmtpop domABCDEF=ACE

Proof

Step Hyp Ref Expression
1 dmsnop.1 BV
2 dmprop.1 DV
3 dmtpop.1 FV
4 df-tp ABCDEF=ABCDEF
5 4 dmeqi domABCDEF=domABCDEF
6 dmun domABCDEF=domABCDdomEF
7 1 2 dmprop domABCD=AC
8 3 dmsnop domEF=E
9 7 8 uneq12i domABCDdomEF=ACE
10 5 6 9 3eqtri domABCDEF=ACE
11 df-tp ACE=ACE
12 10 11 eqtr4i domABCDEF=ACE