Metamath Proof Explorer


Theorem cnvcnvsn

Description: Double converse of a singleton of an ordered pair. (Unlike cnvsn , this does not need any sethood assumptions on A and B .) (Contributed by Mario Carneiro, 26-Apr-2015)

Ref Expression
Assertion cnvcnvsn A B -1 -1 = B A -1

Proof

Step Hyp Ref Expression
1 relcnv Rel A B -1 -1
2 relcnv Rel B A -1
3 vex x V
4 vex y V
5 3 4 opelcnv x y A B -1 -1 y x A B -1
6 ancom x = A y = B y = B x = A
7 3 4 opth x y = A B x = A y = B
8 4 3 opth y x = B A y = B x = A
9 6 7 8 3bitr4i x y = A B y x = B A
10 opex x y V
11 10 elsn x y A B x y = A B
12 opex y x V
13 12 elsn y x B A y x = B A
14 9 11 13 3bitr4i x y A B y x B A
15 4 3 opelcnv y x A B -1 x y A B
16 3 4 opelcnv x y B A -1 y x B A
17 14 15 16 3bitr4i y x A B -1 x y B A -1
18 5 17 bitri x y A B -1 -1 x y B A -1
19 1 2 18 eqrelriiv A B -1 -1 = B A -1