Metamath Proof Explorer


Theorem dmxp

Description: The domain of a Cartesian product. Part of Theorem 3.13(x) of Monk1 p. 37. (Contributed by NM, 28-Jul-1995) (Proof shortened by Andrew Salmon, 27-Aug-2011)

Ref Expression
Assertion dmxp BdomA×B=A

Proof

Step Hyp Ref Expression
1 df-xp A×B=yx|yAxB
2 1 dmeqi domA×B=domyx|yAxB
3 n0 BxxB
4 3 biimpi BxxB
5 4 ralrimivw ByAxxB
6 dmopab3 yAxxBdomyx|yAxB=A
7 5 6 sylib Bdomyx|yAxB=A
8 2 7 eqtrid BdomA×B=A