Metamath Proof Explorer


Theorem dmxrncnvepres

Description: Domain of the range product with restricted converse epsilon relation. (Contributed by Peter Mazsa, 23-Nov-2025)

Ref Expression
Assertion dmxrncnvepres dom R E -1 A = dom R A

Proof

Step Hyp Ref Expression
1 xrnres R E -1 A = R A E -1
2 xrnres2 R E -1 A = R E -1 A
3 1 2 eqtr3i R A E -1 = R E -1 A
4 3 dmeqi dom R A E -1 = dom R E -1 A
5 dmxrncnvep dom R A E -1 = dom R A
6 4 5 eqtr3i dom R E -1 A = dom R A