Metamath Proof Explorer


Theorem dmxrncnvepres2

Description: Domain of the range product with restricted converse epsilon relation. (Contributed by Peter Mazsa, 29-Jan-2026)

Ref Expression
Assertion dmxrncnvepres2 dom R E -1 A = A dom R

Proof

Step Hyp Ref Expression
1 dmres dom R A = A dom R
2 1 difeq1i dom R A = A dom R
3 dmxrncnvepres dom R E -1 A = dom R A
4 indif2 A dom R = A dom R
5 2 3 4 3eqtr4i dom R E -1 A = A dom R