Metamath Proof Explorer


Theorem dmxrncnvepres2

Description: Domain of the range product with restricted converse epsilon relation. (Contributed by Peter Mazsa, 29-Jan-2026)

Ref Expression
Assertion dmxrncnvepres2 dom ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) = ( 𝐴 ∩ ( dom 𝑅 ∖ { ∅ } ) )

Proof

Step Hyp Ref Expression
1 dmres dom ( 𝑅𝐴 ) = ( 𝐴 ∩ dom 𝑅 )
2 1 difeq1i ( dom ( 𝑅𝐴 ) ∖ { ∅ } ) = ( ( 𝐴 ∩ dom 𝑅 ) ∖ { ∅ } )
3 dmxrncnvepres dom ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) = ( dom ( 𝑅𝐴 ) ∖ { ∅ } )
4 indif2 ( 𝐴 ∩ ( dom 𝑅 ∖ { ∅ } ) ) = ( ( 𝐴 ∩ dom 𝑅 ) ∖ { ∅ } )
5 2 3 4 3eqtr4i dom ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) = ( 𝐴 ∩ ( dom 𝑅 ∖ { ∅ } ) )