Metamath Proof Explorer


Theorem dmxrncnvepres

Description: Domain of the range product with restricted converse epsilon relation. (Contributed by Peter Mazsa, 23-Nov-2025)

Ref Expression
Assertion dmxrncnvepres dom ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) = ( dom ( 𝑅𝐴 ) ∖ { ∅ } )

Proof

Step Hyp Ref Expression
1 xrnres ( ( 𝑅 E ) ↾ 𝐴 ) = ( ( 𝑅𝐴 ) ⋉ E )
2 xrnres2 ( ( 𝑅 E ) ↾ 𝐴 ) = ( 𝑅 ⋉ ( E ↾ 𝐴 ) )
3 1 2 eqtr3i ( ( 𝑅𝐴 ) ⋉ E ) = ( 𝑅 ⋉ ( E ↾ 𝐴 ) )
4 3 dmeqi dom ( ( 𝑅𝐴 ) ⋉ E ) = dom ( 𝑅 ⋉ ( E ↾ 𝐴 ) )
5 dmxrncnvep dom ( ( 𝑅𝐴 ) ⋉ E ) = ( dom ( 𝑅𝐴 ) ∖ { ∅ } )
6 4 5 eqtr3i dom ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) = ( dom ( 𝑅𝐴 ) ∖ { ∅ } )