Description: Domain of the range product with restricted converse epsilon relation. (Contributed by Peter Mazsa, 23-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dmxrncnvepres | |- dom ( R |X. ( `' _E |` A ) ) = ( dom ( R |` A ) \ { (/) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrnres | |- ( ( R |X. `' _E ) |` A ) = ( ( R |` A ) |X. `' _E ) |
|
| 2 | xrnres2 | |- ( ( R |X. `' _E ) |` A ) = ( R |X. ( `' _E |` A ) ) |
|
| 3 | 1 2 | eqtr3i | |- ( ( R |` A ) |X. `' _E ) = ( R |X. ( `' _E |` A ) ) |
| 4 | 3 | dmeqi | |- dom ( ( R |` A ) |X. `' _E ) = dom ( R |X. ( `' _E |` A ) ) |
| 5 | dmxrncnvep | |- dom ( ( R |` A ) |X. `' _E ) = ( dom ( R |` A ) \ { (/) } ) |
|
| 6 | 4 5 | eqtr3i | |- dom ( R |X. ( `' _E |` A ) ) = ( dom ( R |` A ) \ { (/) } ) |