Metamath Proof Explorer


Theorem dmxrncnvepres2

Description: Domain of the range product with restricted converse epsilon relation. (Contributed by Peter Mazsa, 29-Jan-2026)

Ref Expression
Assertion dmxrncnvepres2
|- dom ( R |X. ( `' _E |` A ) ) = ( A i^i ( dom R \ { (/) } ) )

Proof

Step Hyp Ref Expression
1 dmres
 |-  dom ( R |` A ) = ( A i^i dom R )
2 1 difeq1i
 |-  ( dom ( R |` A ) \ { (/) } ) = ( ( A i^i dom R ) \ { (/) } )
3 dmxrncnvepres
 |-  dom ( R |X. ( `' _E |` A ) ) = ( dom ( R |` A ) \ { (/) } )
4 indif2
 |-  ( A i^i ( dom R \ { (/) } ) ) = ( ( A i^i dom R ) \ { (/) } )
5 2 3 4 3eqtr4i
 |-  dom ( R |X. ( `' _E |` A ) ) = ( A i^i ( dom R \ { (/) } ) )