| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eldmres3 |
|- ( B e. V -> ( B e. dom ( R |` A ) <-> ( B e. A /\ [ B ] R =/= (/) ) ) ) |
| 2 |
1
|
anbi1d |
|- ( B e. V -> ( ( B e. dom ( R |` A ) /\ B =/= (/) ) <-> ( ( B e. A /\ [ B ] R =/= (/) ) /\ B =/= (/) ) ) ) |
| 3 |
|
dmxrncnvepres |
|- dom ( R |X. ( `' _E |` A ) ) = ( dom ( R |` A ) \ { (/) } ) |
| 4 |
3
|
eleq2i |
|- ( B e. dom ( R |X. ( `' _E |` A ) ) <-> B e. ( dom ( R |` A ) \ { (/) } ) ) |
| 5 |
|
eldifsn |
|- ( B e. ( dom ( R |` A ) \ { (/) } ) <-> ( B e. dom ( R |` A ) /\ B =/= (/) ) ) |
| 6 |
4 5
|
bitri |
|- ( B e. dom ( R |X. ( `' _E |` A ) ) <-> ( B e. dom ( R |` A ) /\ B =/= (/) ) ) |
| 7 |
|
3anan32 |
|- ( ( B e. A /\ B =/= (/) /\ [ B ] R =/= (/) ) <-> ( ( B e. A /\ [ B ] R =/= (/) ) /\ B =/= (/) ) ) |
| 8 |
2 6 7
|
3bitr4g |
|- ( B e. V -> ( B e. dom ( R |X. ( `' _E |` A ) ) <-> ( B e. A /\ B =/= (/) /\ [ B ] R =/= (/) ) ) ) |