Metamath Proof Explorer


Theorem dn1

Description: A single axiom for Boolean algebra known as DN_1. See McCune, Veroff, Fitelson, Harris, Feist, Wos,Short single axioms for Boolean algebra, Journal of Automated Reasoning, 29(1):1--16, 2002. ( https://www.cs.unm.edu/~mccune/papers/basax/v12.pdf ). (Contributed by Jeff Hankins, 3-Jul-2009) (Proof shortened by Andrew Salmon, 13-May-2011) (Proof shortened by Wolf Lammen, 6-Jan-2013)

Ref Expression
Assertion dn1 ¬¬¬φψχ¬φ¬¬χ¬χθχ

Proof

Step Hyp Ref Expression
1 pm2.45 ¬φψ¬φ
2 imnan ¬φψ¬φ¬¬φψφ
3 1 2 mpbi ¬¬φψφ
4 3 biorfi χχ¬φψφ
5 orcom χ¬φψφ¬φψφχ
6 ordir ¬φψφχ¬φψχφχ
7 4 5 6 3bitri χ¬φψχφχ
8 pm4.45 χχχθ
9 anor χχ謬χ¬χθ
10 8 9 bitri χ¬¬χ¬χθ
11 10 orbi2i φχφ¬¬χ¬χθ
12 11 anbi2i ¬φψχφχ¬φψχφ¬¬χ¬χθ
13 anor ¬φψχφ¬¬χ¬χ謬¬φψχ¬φ¬¬χ¬χθ
14 7 12 13 3bitrri ¬¬¬φψχ¬φ¬¬χ¬χθχ