Metamath Proof Explorer


Theorem dom0

Description: A set dominated by the empty set is empty. (Contributed by NM, 22-Nov-2004) Avoid ax-pow , ax-un . (Revised by BTernaryTau, 29-Nov-2024)

Ref Expression
Assertion dom0 AA=

Proof

Step Hyp Ref Expression
1 brdomi Aff:A1-1
2 f1f f:A1-1f:A
3 f00 f:Af=A=
4 3 simprbi f:AA=
5 2 4 syl f:A1-1A=
6 5 exlimiv ff:A1-1A=
7 1 6 syl AA=
8 en0 AA=
9 endom AA
10 8 9 sylbir A=A
11 7 10 impbii AA=