Metamath Proof Explorer


Theorem dominf

Description: A nonempty set that is a subset of its union is infinite. This version is proved from ax-cc . See dominfac for a version proved from ax-ac . The axiom of Regularity is used for this proof, via inf3lem6 , and its use is necessary: otherwise the set A = { A } or A = { (/) , A } (where the second example even has nonempty well-founded part) provides a counterexample. (Contributed by Mario Carneiro, 9-Feb-2013)

Ref Expression
Hypothesis dominf.1 A V
Assertion dominf A A A ω A

Proof

Step Hyp Ref Expression
1 dominf.1 A V
2 neeq1 x = A x A
3 id x = A x = A
4 unieq x = A x = A
5 3 4 sseq12d x = A x x A A
6 2 5 anbi12d x = A x x x A A A
7 breq2 x = A ω x ω A
8 6 7 imbi12d x = A x x x ω x A A A ω A
9 eqid y V w x | w x y = y V w x | w x y
10 eqid rec y V w x | w x y ω = rec y V w x | w x y ω
11 9 10 1 1 inf3lem6 x x x rec y V w x | w x y ω : ω 1-1 𝒫 x
12 vpwex 𝒫 x V
13 12 f1dom rec y V w x | w x y ω : ω 1-1 𝒫 x ω 𝒫 x
14 pwfi x Fin 𝒫 x Fin
15 14 biimpi x Fin 𝒫 x Fin
16 isfinite x Fin x ω
17 isfinite 𝒫 x Fin 𝒫 x ω
18 15 16 17 3imtr3i x ω 𝒫 x ω
19 18 con3i ¬ 𝒫 x ω ¬ x ω
20 12 domtriom ω 𝒫 x ¬ 𝒫 x ω
21 vex x V
22 21 domtriom ω x ¬ x ω
23 19 20 22 3imtr4i ω 𝒫 x ω x
24 11 13 23 3syl x x x ω x
25 1 8 24 vtocl A A A ω A