Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 for detailed description. (Contributed by NM, 29-Oct-1996)
Ref | Expression | ||
---|---|---|---|
Hypotheses | inf3lem.1 | |
|
inf3lem.2 | |
||
inf3lem.3 | |
||
inf3lem.4 | |
||
Assertion | inf3lem6 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inf3lem.1 | |
|
2 | inf3lem.2 | |
|
3 | inf3lem.3 | |
|
4 | inf3lem.4 | |
|
5 | vex | |
|
6 | vex | |
|
7 | 1 2 5 6 | inf3lem5 | |
8 | dfpss2 | |
|
9 | 8 | simprbi | |
10 | 7 9 | syl6 | |
11 | 10 | expdimp | |
12 | 11 | adantrl | |
13 | 1 2 6 5 | inf3lem5 | |
14 | dfpss2 | |
|
15 | 14 | simprbi | |
16 | eqcom | |
|
17 | 15 16 | sylnib | |
18 | 13 17 | syl6 | |
19 | 18 | expdimp | |
20 | 19 | adantrr | |
21 | 12 20 | jaod | |
22 | 21 | con2d | |
23 | nnord | |
|
24 | nnord | |
|
25 | ordtri3 | |
|
26 | 23 24 25 | syl2an | |
27 | 26 | adantl | |
28 | 22 27 | sylibrd | |
29 | 28 | ralrimivva | |
30 | frfnom | |
|
31 | fneq1 | |
|
32 | 30 31 | mpbiri | |
33 | fvelrnb | |
|
34 | 1 2 6 4 | inf3lemd | |
35 | fvex | |
|
36 | 35 | elpw | |
37 | 34 36 | sylibr | |
38 | eleq1 | |
|
39 | 37 38 | syl5ibcom | |
40 | 39 | rexlimiv | |
41 | 33 40 | syl6bi | |
42 | 41 | ssrdv | |
43 | 42 | ancli | |
44 | 2 32 43 | mp2b | |
45 | df-f | |
|
46 | 44 45 | mpbir | |
47 | 29 46 | jctil | |
48 | dff13 | |
|
49 | 47 48 | sylibr | |