Metamath Proof Explorer


Theorem inf3lem6

Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 for detailed description. (Contributed by NM, 29-Oct-1996)

Ref Expression
Hypotheses inf3lem.1 G=yVwx|wxy
inf3lem.2 F=recGω
inf3lem.3 AV
inf3lem.4 BV
Assertion inf3lem6 xxxF:ω1-1𝒫x

Proof

Step Hyp Ref Expression
1 inf3lem.1 G=yVwx|wxy
2 inf3lem.2 F=recGω
3 inf3lem.3 AV
4 inf3lem.4 BV
5 vex uV
6 vex vV
7 1 2 5 6 inf3lem5 xxxuωvuFvFu
8 dfpss2 FvFuFvFu¬Fv=Fu
9 8 simprbi FvFu¬Fv=Fu
10 7 9 syl6 xxxuωvu¬Fv=Fu
11 10 expdimp xxxuωvu¬Fv=Fu
12 11 adantrl xxxvωuωvu¬Fv=Fu
13 1 2 6 5 inf3lem5 xxxvωuvFuFv
14 dfpss2 FuFvFuFv¬Fu=Fv
15 14 simprbi FuFv¬Fu=Fv
16 eqcom Fu=FvFv=Fu
17 15 16 sylnib FuFv¬Fv=Fu
18 13 17 syl6 xxxvωuv¬Fv=Fu
19 18 expdimp xxxvωuv¬Fv=Fu
20 19 adantrr xxxvωuωuv¬Fv=Fu
21 12 20 jaod xxxvωuωvuuv¬Fv=Fu
22 21 con2d xxxvωuωFv=Fu¬vuuv
23 nnord vωOrdv
24 nnord uωOrdu
25 ordtri3 OrdvOrduv=u¬vuuv
26 23 24 25 syl2an vωuωv=u¬vuuv
27 26 adantl xxxvωuωv=u¬vuuv
28 22 27 sylibrd xxxvωuωFv=Fuv=u
29 28 ralrimivva xxxvωuωFv=Fuv=u
30 frfnom recGωFnω
31 fneq1 F=recGωFFnωrecGωFnω
32 30 31 mpbiri F=recGωFFnω
33 fvelrnb FFnωuranFvωFv=u
34 1 2 6 4 inf3lemd vωFvx
35 fvex FvV
36 35 elpw Fv𝒫xFvx
37 34 36 sylibr vωFv𝒫x
38 eleq1 Fv=uFv𝒫xu𝒫x
39 37 38 syl5ibcom vωFv=uu𝒫x
40 39 rexlimiv vωFv=uu𝒫x
41 33 40 syl6bi FFnωuranFu𝒫x
42 41 ssrdv FFnωranF𝒫x
43 42 ancli FFnωFFnωranF𝒫x
44 2 32 43 mp2b FFnωranF𝒫x
45 df-f F:ω𝒫xFFnωranF𝒫x
46 44 45 mpbir F:ω𝒫x
47 29 46 jctil xxxF:ω𝒫xvωuωFv=Fuv=u
48 dff13 F:ω1-1𝒫xF:ω𝒫xvωuωFv=Fuv=u
49 47 48 sylibr xxxF:ω1-1𝒫x