Step |
Hyp |
Ref |
Expression |
1 |
|
inf3lem.1 |
|
2 |
|
inf3lem.2 |
|
3 |
|
inf3lem.3 |
|
4 |
|
inf3lem.4 |
|
5 |
|
vex |
|
6 |
|
vex |
|
7 |
1 2 5 6
|
inf3lem5 |
|
8 |
|
dfpss2 |
|
9 |
8
|
simprbi |
|
10 |
7 9
|
syl6 |
|
11 |
10
|
expdimp |
|
12 |
11
|
adantrl |
|
13 |
1 2 6 5
|
inf3lem5 |
|
14 |
|
dfpss2 |
|
15 |
14
|
simprbi |
|
16 |
|
eqcom |
|
17 |
15 16
|
sylnib |
|
18 |
13 17
|
syl6 |
|
19 |
18
|
expdimp |
|
20 |
19
|
adantrr |
|
21 |
12 20
|
jaod |
|
22 |
21
|
con2d |
|
23 |
|
nnord |
|
24 |
|
nnord |
|
25 |
|
ordtri3 |
|
26 |
23 24 25
|
syl2an |
|
27 |
26
|
adantl |
|
28 |
22 27
|
sylibrd |
|
29 |
28
|
ralrimivva |
|
30 |
|
frfnom |
|
31 |
|
fneq1 |
|
32 |
30 31
|
mpbiri |
|
33 |
|
fvelrnb |
|
34 |
1 2 6 4
|
inf3lemd |
|
35 |
|
fvex |
|
36 |
35
|
elpw |
|
37 |
34 36
|
sylibr |
|
38 |
|
eleq1 |
|
39 |
37 38
|
syl5ibcom |
|
40 |
39
|
rexlimiv |
|
41 |
33 40
|
syl6bi |
|
42 |
41
|
ssrdv |
|
43 |
42
|
ancli |
|
44 |
2 32 43
|
mp2b |
|
45 |
|
df-f |
|
46 |
44 45
|
mpbir |
|
47 |
29 46
|
jctil |
|
48 |
|
dff13 |
|
49 |
47 48
|
sylibr |
|