Metamath Proof Explorer


Theorem domsdomtr

Description: Transitivity of dominance and strict dominance. Theorem 22(ii) of Suppes p. 97. (Contributed by NM, 10-Jun-1998) (Revised by Mario Carneiro, 26-Apr-2015)

Ref Expression
Assertion domsdomtr ABBCAC

Proof

Step Hyp Ref Expression
1 sdomdom BCBC
2 domtr ABBCAC
3 1 2 sylan2 ABBCAC
4 simpr ABBCBC
5 ensym ACCA
6 simpl ABBCAB
7 endomtr CAABCB
8 5 6 7 syl2anr ABBCACCB
9 domnsym CB¬BC
10 8 9 syl ABBCAC¬BC
11 10 ex ABBCAC¬BC
12 4 11 mt2d ABBC¬AC
13 brsdom ACAC¬AC
14 3 12 13 sylanbrc ABBCAC